1
|
Cao JF, Zhang X, Xia Q, Hang K, Men J, Tian J, Liao D, Xia Z, Li K. Insights into curcumin's anticancer activity in pancreatic ductal adenocarcinoma: Experimental and computational evidence targeting HRAS, CCND1, EGFR and AKT1. Bioorg Chem 2025; 157:108264. [PMID: 39954354 DOI: 10.1016/j.bioorg.2025.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Curcumin, as a natural polyphenolic compound, possesses antitumor, antioxidant properties and anti-inflammatory. Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor, and there is a lack of molecular mechanisms and therapeutic options regarding relevant therapeutic agents. Therefore, we investigated the mechanism of curcumin inhibiting pancreatic cancer growth by modulating proliferation of cells and cellular metabolism. METHODS Bioinformatics analysis was involved in analyzing the intersecting targets of curcumin and pancreatic ductal adenocarcinoma. The effect of curcumin on proliferation of PANC-1 cells was tested by CCK-8, and total RNA from PANC-1 was also analysed by transcriptome sequencing. Molecular docking was involved in verifying binding stability of curcumin to protein targets. Molecular dynamics simulated and evaluated binding free energy, hydrogen bonds and root mean square fluctuation of the complex. RESULTS PPI, GO and KEGG were involved in screening and analysing key interacting protein targets. 40 μg/mL curcumin significantly inhibited the growth and proliferation of PANC-1. Transcriptome sequencing results showed gene expression of Cyclin D1 (CCND1), AKT serine/threonine kinase 1 (AKT1), HRas proto-oncogene (HRAS), epidermal growth factor receptor (EGFR) was significantly down-regulated by curcumin treatment. Result of molecular dynamics and molecular docking inhibited the free binding energies of CCND1/Curcumin, HRAS/Curcumin, AKT1/Curcumin and EGFR/Curcumin were -21.13 ± 3.41 kcal/mol, -21.84 ± 4.38 kcal/mol, -20.61 ± 1.82 kcal/mol and -27.37 ± 1.94 kcal/mol, respectively. CONCLUSION We found curcumin may not only regulate cell cycle progression in PDAC and apoptosis by down-regulating HRAS, thereby inhibiting CCND1 and its downstream signaling pathways, but also inhibit energy metabolism reprogramming, Ras-RAF-MEK-ERK and other downstream signalling pathways by down-regulating EGFR and AKT1, thereby affecting tumor cell metastasis, survival and proliferation.
Collapse
Affiliation(s)
- Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Xiao Zhang
- Chengdu Medical College, Chengdu 610500 Sichuan, China
| | - Qingjie Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kuan Hang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Jie Men
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Jin Tian
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Dunshui Liao
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Zengliang Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China; Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
2
|
Wang Y, Esa SS, Yu R, Ibrahim SA, Li Y, Sheng Z, Wu J, Jiang H, Di X, Wen D, Liu S, Zhang S. Calothrixin B by docking JAK2 is a potential therapeutic inhibitor for pancreatic ductal adenocarcinoma. J Pharm Pharmacol 2025; 77:404-417. [PMID: 39847514 DOI: 10.1093/jpp/rgae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/25/2025]
Abstract
OBJECTIVES Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment. METHODS Molecular docking, molecular dynamics, and Western blot experiments were conducted to verify the binding of Calothrixin B to JAK2 and its inhibitory effect on the JAK2-STAT3 signaling axis. KEY FINDINGS Recognizing the significant impact of JAK-STAT3 signaling pathway in pancreatic cancer, we screened the Zinc database to discover potential JAK2 inhibitors, and identified the small molecule Calothrixin B as a promising drug. Molecular simulations revealed stable interactions and the formation of hydrogen bonds between Calothrixin B and specific amino acids (Asp 994, Leu 855, and Arg 980) after a 100 ns simulation. Furthermore, we show that Calothrixin B inhibited the activity of the JAK2-STAT3 signaling pathway, arrested pancreatic cancer cells in the G1 phase, induced apoptosis, and significantly inhibited cell migration. Moreover, in vivo on a subcutaneous tumor model in nude mice confirmed that Calothrixin B effectively inhibited tumor growth in nude mice. In addition, the combination of Carlothrixin B and gemcitabine had a better inhibitory effect on pancreatic cancer cells. CONCLUSION These findings introduce new avenues for Calothrixin B as promising therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
| | - Sayed S Esa
- Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Rongji Yu
- Department of Biomedical Informatics, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
| | | | - Yixin Li
- Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
| | - Zhi Sheng
- Hunan Beta Biopharmaceuticals Co. Ltd, Changsha, Hunan, China
| | - Jinzheng Wu
- Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
| | - Sheng Liu
- Applications of Medicinal Plants, Guizhou Medical University; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China
| |
Collapse
|
3
|
Li J, Liu J, Wu Y, Sun Y, Huang G, Jin M. α-Hederin inhibited pancreatic cancer cell malignant progression by inhibiting LDHA-mediated glycolysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03621-7. [PMID: 39969605 DOI: 10.1007/s00210-024-03621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/08/2024] [Indexed: 02/20/2025]
Abstract
α-Hederin is a pentacyclic triterpenoid saponin extracted from Pulsatilla chinensis, which is known to suppress cancer cell proliferation. However, the role of this compound in pancreatic cancer cells remains unclear. The aim of this study was to reveal the docking molecular and the regulatory mechanism of α-hederin in pancreatic cancer. Here, we cultured Capan-1 and BxPC-3 cells and treated with different doses of α-hederin. Cell proliferation, migration, and apoptosis were detected using CCK8, EdU, Transwell, wound healing assay, and flow cytometer apoptosis assay. The in vivo experiment using subcutaneous tumor and caudal vein metastasis model to evaluate the inhibit effect of α-hederin Capan-1 cell tumor growth and metastasis. Proteomics were used to reveal the regulatory mechanism. The result shows that α-hederin treatment inhibits cell proliferation and invasion in concentration dependence way in both vivo and in vitro. The result shows that the IC50 for both Capan-1 and BxPC-3 were 32.5 Mµ and 15 Mµ, respectively. Flow cytometer apoptosis assay shows that α-hederin treatment promotion cell apoptosis in both Capan-1 and BxPC-3 cells. Proteomics and immunofluorescence detection confirmed that α-hederin treatment downregulated lactate dehydrogenase A (LDHA) expression and inhibited glycolysis. Molecular docking of α-hederin and LDHA proteins further confirmed that LDHA is a target of α-hederin. Taken together, this study confirms that α-hederin inhibits pancreatic cancer cell proliferation and invasion by inhibiting LDHA-mediated glycolysis. LDHA may be a direct target of α-hederin in pancreatic cancer.
Collapse
Affiliation(s)
- Jingjing Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiao Liu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yue Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yi Sun
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
4
|
Chen R, Iwai T, Tajima H, Adachi K, Okuwaki K, Watanabe M, Hanaoka T, Tamaki A, Kumamoto Y, Kusano C. S-1/irinotecan/oxaliplatin chemotherapy achieved a pathological complete remission in advanced pancreatic carcinoma. Clin J Gastroenterol 2025; 18:220-223. [PMID: 39503980 DOI: 10.1007/s12328-024-02055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/20/2024] [Indexed: 02/01/2025]
Abstract
Chemotherapy has been developed for many years for malignancies, including advanced pancreatic cancer, downsizing the primary site, thereby enabling complete cure with the combination of conversion surgery. Pathological complete remission from operation samples was usually identified as a promising indication for a good prognosis for many carcinomas. Several case reports consisting of pathological complete remission after chemotherapy application have been reported but no case of pathological complete remission that resulted from successful extensive resection by surgery after S-1, irinotecan, and oxaliplatin (SIROX) chemotherapy. A 48-year-old male patient was hospitalized due to abdominal pain which turned out to be a 25 mm-sized advanced uncinate process of pancreatic cancer with possible duodenum invasion and hepatic metastasis. The tumor had decreased after administering 23 sessions of modified SIROX chemotherapy, and he underwent pylorus-preserving pancreaticoduodenectomy with portal vein resection. He was successfully managed with conservative treatment and discharged 12 days postoperatively despite his postoperative weakness. He had been taking S-1 pills for 6 months and until now, 3 years postoperatively, with no relapse. The final pathology reported complete tumor regression. Therefore, we emphasize the oncologic significance of chemotherapy in the uncinate process of pancreatic cancer and the potential role of conversion surgery.
Collapse
Affiliation(s)
- Ru Chen
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Gastroenterology, Kitasato Medical Center, Kitamoto, Japan
| | - Tomohisa Iwai
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan.
| | - Hiroshi Tajima
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kai Adachi
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kosuke Okuwaki
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masafumi Watanabe
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Taro Hanaoka
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akihiro Tamaki
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Kumamoto
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Chika Kusano
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
5
|
Sindhi K, Kanugo A. Recent Developments in Nanotechnology and Immunotherapy for the Diagnosis and Treatment of Pancreatic Cancer. Curr Pharm Biotechnol 2025; 26:143-168. [PMID: 38415488 DOI: 10.2174/0113892010284407240212110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer kills millions of people worldwide each year and is one of the most prevalent causes of mortality that requires prompt therapy. A large number of people suffering from pancreatic cancer are detected at an advanced stage, with incurable and drug-resistant tumor, hence the overall survival rate of pancreatic cancer is less. The advance phase of this cancer is generated because of expression of the cancer-causing gene, inactivation of the tumorsuppressing gene, and deregulation of molecules in different cellular signalling pathways. The prompt diagnosis through the biomarkers significantly evades the progress and accelerates the survival rates. The overexpression of Mesothelin, Urokinase plasminogen activator, IGFR, Epidermal growth factor receptor, Plectin-1, Mucin-1 and Zinc transporter 4 were recognized in the diagnosis of pancreatic cancer. Nanotechnology has led to the development of nanocarriersbased formulations (lipid, polymer, inorganic, carbon based and advanced nanocarriers) which overcome the hurdles of conventional therapy, chemotherapy and radiotherapy which causes toxicity to adjacent healthy tissues. The biocompatibility, toxicity and large-scale manufacturing are the hurdles associated with the nanocarriers-based approaches. Currently, Immunotherapybased techniques emerged as an efficient therapeutic alternative for the prevention of cancer. Immunological checkpoint targeting techniques have demonstrated significant efficacy in human cancers. Recent advancements in checkpoint inhibitors, adoptive T cell therapies, and cancer vaccines have shown potential in overcoming the immune evasion mechanisms of pancreatic cancer cells. Combining these immunotherapeutic approaches with nanocarriers holds great promise in enhancing the antitumor response and improving patient survival.
Collapse
Affiliation(s)
- Komal Sindhi
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
| | - Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
- Department of Pharmaceutical Quality Assurance, SVKM Institute of Pharmacy, Dhule, 424001, India
| |
Collapse
|
6
|
Li X, Li J, Liu Y, Sun L, Tai Q, Gao S, Jiang W. Inhibition of KDM5B participates in immune microenvironment remodeling in pancreatic cancer by inducing STING expression. Cytokine 2024; 175:156451. [PMID: 38163400 DOI: 10.1016/j.cyto.2023.156451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aims to investigate the effect of lysine demethylase 5B (KDM5B)-mediated dimethyl-lysine 4 histone H3 (H3K4me2) demethylation on immune microenvironment remodeling in pancreatic cancer. METHODS Pan 02 mouse pancreatic cancer cell lines were cultured and used to establish tumor model in vivo. RT-qPCR and Western blot were used to detect the expression of stimulator of interferon gene (STING) and KDM5B in pancreatic cancer tissues and Pan 02 cells. The specific demethylation domain of KDM5B was detected by isothermal titration calorimetry binding assay. The regulatory roles of KDM5B in cell apoptosis and remodeling of immune microenvironment in vitro and in vivo were explored after loss-of functions in KDM5B. RESULTS KDM5B was highly expressed but STING was poorly expressed in pancreatic cancer tissues and Pan 02 cells. After knockdown of KDM5B, CD8+ T cells recognized and killed Pan 02 cells, which promoted the infiltration of CD8+ T cells in Pan 02 cells, thus improving the anti-tumor ability. The PHD domain in KDM5B specifically bound to H3K4me2 peptide and inhibition of KDM5B induced STING expression. Knockdown of KDM5B up-regulated STING expression to promote apoptosis, thus regulating the immune microenvironment and inhibiting the growth of tumor in mice. Meanwhile, knockdown of KDM5B and STING simultaneously counteracted the knockdown effect of KDM5B. CONCLUSION Inhibition of KDM5B can promote the expression of STING through H3K4me2 demethylation, which promoted the recognition and killing of Pan 02 cells by CD8+ T cells, thus improving the anti-tumor ability and regulating the immune microenvironment.
Collapse
Affiliation(s)
- Xuesong Li
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China.
| | - Jiazhuang Li
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Ying Liu
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Li Sun
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Qingyang Tai
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Shoubao Gao
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| | - Weiwei Jiang
- The Second Department of Oncology, The Third Affiliated Hospital of Qiqihar Medical University, PR China
| |
Collapse
|
7
|
Yang B, Quan Y, Zhao W, Ji Y, Yang X, Li J, Li Y, Liu X, Wang Y, Li Y. Design, synthesis and biological evaluation of 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives as CDK inhibitors. J Enzyme Inhib Med Chem 2023; 38:2169282. [PMID: 36656085 PMCID: PMC9858427 DOI: 10.1080/14756366.2023.2169282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To explore the potential use of CDK inhibitors in pancreatic ductal adenocarcinoma (PDAC) therapy, a series of novel 2-((4-sulfamoylphenyl)amino)-pyrrolo[2,3-d]pyrimidine derivatives was designed, synthesised, and investigated for inhibition on both CDK kinase activity and cellular proliferation of pancreatic cancer. Most of new sulphonamide-containing derivatives demonstrated strong inhibitory activity on CDK9 and obvious anti-proliferative activity in cell culture. Moreover, two new compounds suppressed cell proliferation of multiple human pancreatic cancer cell lines. The most potent compound 2g inhibited cancer cell proliferation by blocking Rb phosphorylation and induced apoptosis via downregulation of CDK9 downstream proteins Mcl-1 and c-Myc in MIA PaCa-2 cells. CDK9 knockdown experiment suggests its anti-proliferative activity is mainly mediated by CDK9. Additionally, 2g displayed moderate tumour inhibition effect in AsPC-1 derived xenograft mice model. Altogether, this study provided a new start for further optimisation to develop potential CDK inhibitor candidates for PDAC treatment by alone or combination use.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanni Quan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yingjie Ji
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaotang Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianrui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,Ying Wang Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, China
| | - Yanping Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China,CONTACT Yanping Li
| |
Collapse
|
8
|
Chebaro Z, Abdallah R, Badran A, Hamade K, Hijazi A, Maresca M, Mesmar JE, Baydoun E. Study of the antioxidant and anti-pancreatic cancer activities of Anchusa strigosa aqueous extracts obtained by maceration and ultrasonic extraction techniques. Front Pharmacol 2023; 14:1201969. [PMID: 37593172 PMCID: PMC10427766 DOI: 10.3389/fphar.2023.1201969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy and a leading cause of cancer-related deaths worldwide. Moreover, the incidence and mortality rates for pancreatic cancer are projected to keep increasing. A major challenge in the treatment of pancreatic cancer is the lack of effective screening approaches, which contributes to its poor prognosis, indicating the need for new treatment regimens and alternative therapies, such as herbal medicine. The medicinal plant A. strigosa, which is widely distributed in the Eastern Mediterranean region, is a short prickly plant from the Boraginaceae family that has been widely used in traditional medicine for treating various diseases. Nevertheless, its effect on human pancreatic cancer remains poorly investigated. In the present study, we screened the phytochemical content of Anchusa strigosa aqueous extracts obtained by maceration and ultrasound-assisted methods (ASM and ASU, respectively) and evaluated their antioxidant effects. We also investigated their anticancer effects and possible underlying mechanisms. The results show that both extracts were rich in bioactive molecules, with slight differences in their composition. Both extracts exhibited remarkable antioxidant potential and potent radical-scavenging activity in vitro. Additionally, non-cytotoxic concentrations of both extracts attenuated cell proliferation in a time- and concentration-dependent manner, which was associated with a decrease in the proliferation marker Ki67 and an induction of the intrinsic apoptotic pathway. Furthermore, the extracts increased the aggregation of pancreatic cancer cells and reduced their migratory potential, with a concomitant downregulation of integrin β1. Finally, we showed that the ASM extract caused a significant decrease in the levels of COX-2, an enzyme that has been linked to inflammation, carcinogenesis, tumor progression, and metastasis. Taken together, our findings provide evidence that A. strigosa extracts, particularly the extract obtained using the maceration method, have a potential anticancer effect and may represent a new resource for the design of novel drugs against pancreatic cancer.
Collapse
Affiliation(s)
- Ziad Chebaro
- Platforme de Recherche et D’analyse en Sciences de L’environnement (EDST-PRASE), Beirut, Lebanon
| | - Rola Abdallah
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Kamar Hamade
- UMRT INRE 1158 BioEcoAgro, Laboratorie BIOPI, University of Picardie Jules Verne, Amiens, France
| | - Akram Hijazi
- Platforme de Recherche et D’analyse en Sciences de L’environnement (EDST-PRASE), Beirut, Lebanon
| | - Marc Maresca
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSM2, Marseille, France
| | | | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Li H, Wang H, Cui Y, Jiang W, Zhan H, Feng L, Gao M, Zhao K, Zhang L, Xie X, Zhao N, Li Y, Liu P. EZH2 regulates pancreatic cancer cells through E2F1, GLI1, CDK3, and Mcm4. Hereditas 2023; 160:23. [PMID: 37198697 DOI: 10.1186/s41065-023-00280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in digestive tract. To explore the role of epigenetic factor EZH2 in the malignant proliferation of PC, so as to provide effective medical help in PC. Sixty paraffin sections of PC were collected and the expression of EZH2 in PC tissues was detected by immunohistochemical assay. Three normal pancreas tissue samples were used as controls. The regulation of EZH2 gene on proliferation and migration of normal pancreatic cell and PC cell were determined by MTS, colony forming, Ki-67 antibody, scratch and Transwell assays. Through differential gene annotation and differential gene signaling pathway analysis, differentially expressed genes related to cell proliferation were selected and verified by RT-qPCR. EZH2 is mainly expressed in the nuclei of pancreatic tumor cells, but not in normal pancreatic cells. The results of cell function experiments showed that EZH2 overexpression could enhance the proliferation and migration ability of PC cell BXPC-3. Cell proliferation ability increased by 38% compared to the control group. EZH2 knockdown resulted in reduced proliferation and migration ability of cells. Compared with control, proliferation ability of cells reduced by 16%-40%. The results of bioinformatics analysis of transcriptome data and RT-qPCR demonstrated that EZH2 could regulate the expression of E2F1, GLI1, CDK3 and Mcm4 in normal and PC cells. The results revealed that EZH2 might regulate the proliferation of normal pancreatic cell and PC cell through E2F1, GLI1, CDK3 and Mcm4.
Collapse
Affiliation(s)
- Hongfeng Li
- Department of Clinical Laboratory, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Hailong Wang
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354 Beima Road, Hongqiao District, Tianjin, 300120, China
| | - Yunlong Cui
- Department of Hepatobiliary Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Wenhua Jiang
- Department of Radiotherapy, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hongjie Zhan
- Department of Gastric Cancer, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Lixia Feng
- Department of Nursing, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Konggang Hospital, Tianjin, 300300, China
| | - Mingyou Gao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Kuo Zhao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Limeng Zhang
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Xiaojing Xie
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ning Zhao
- Department of Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ying Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, No. 12 Health Road, Shijiazhuang, 050000, Hebei, China.
| | - Pengfei Liu
- Department of Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, No. 354 Beima Road, Hongqiao District, Tianjin, 300120, China.
| |
Collapse
|
10
|
Barnett C, Joubert F, Iliopoulou A, Álvarez RS, Pasparakis G. Photochemical Internalization Using Natural Anticancer Drugs, Antimetabolites, and Nanoformulations: A Systematic Study against Breast and Pancreatic Cancer Cell Lines. Mol Pharm 2023; 20:1818-1841. [PMID: 36802639 DOI: 10.1021/acs.molpharmaceut.2c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Photochemical internalization (PCI) is a novel, minimally invasive drug delivery technology that facilitates the delivery of therapeutic molecules into the cytosol of cells. In this work, PCI was utilized in an effort to enhance the therapeutic index of the existing anticancer drugs as well as novel nanοformulations against breast and pancreatic cancer cells. Frontline anticancer drugs were tested with bleomycin as a benchmark PCI control; namely, three vinca alkaloids (vincristine, vinorelbine, and vinblastine), two taxanes (docetaxel and paclitaxel), two antimetabolites (gemcitabine and capecitabine), a combination of taxanes with antimetabolites, and two nano-sized formulations (squalene- and polymer-bound gemcitabine derivatives) were tested in a 3D PCI in vitro model. Strikingly, we discovered that several drug molecules exhibited remarkably augmented therapeutic activity by several orders of magnitude compared to their respective controls (without PCI technology or directly compared with bleomycin controls). Nearly all drug molecules showed enhanced therapeutic efficiency, but more interestingly, we traced several drug molecules that showed multi-fold enhancement (ranging from 5000- up to 170,000-fold enhancement) in their IC70 indices. Interestingly, PCI delivery of the vinca alkaloids (especially PCI-vincristine), and some of the nanoformulations tested, was seen to perform impressively across all of the treatment outcomes of potency, efficacy, and synergy─as determined by means of a cell viability assay. The study constitutes a systematic guide for the development of future PCI-based therapeutic modalities for precision oncology.
Collapse
Affiliation(s)
- Christopher Barnett
- School of Pharmacy Brunswick Square, University College London, London WC1N 1AX, U.K
| | - Fanny Joubert
- School of Pharmacy Brunswick Square, University College London, London WC1N 1AX, U.K
| | - Alexandra Iliopoulou
- School of Pharmacy Brunswick Square, University College London, London WC1N 1AX, U.K
| | - Raúl Sánchez Álvarez
- School of Pharmacy Brunswick Square, University College London, London WC1N 1AX, U.K
| | - George Pasparakis
- School of Pharmacy Brunswick Square, University College London, London WC1N 1AX, U.K.,Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| |
Collapse
|
11
|
Zhang T, Wang H, Cai Z, Zhang S, Jiang C. RET rearrangement-positive pancreatic cancer has remarkable response to pralsetinib: a case report. Front Oncol 2023; 13:1078076. [PMID: 37139148 PMCID: PMC10149926 DOI: 10.3389/fonc.2023.1078076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Patients with metastatic pancreatic cancer have limited treatment options and a dismal prognosis. While RET fusion is rare (0.6%) in pancreatic cancer, the efficacy of RET-targeted treatment in patients with TRIM33-RET fusion has not been previously reported. Herein, we presented a case of a 68-year-old man with pancreatic cancer harboring TRIM33-RET fusion who responded remarkably to pralsetinib despite being intolerant to chemotherapy. To our knowledge, this is the first report on the clinical value of a single TRIM33-RET fusion in pancreatic cancer, which may benefit from the targeted therapy.
Collapse
Affiliation(s)
- Tongyi Zhang
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Hongwei Wang
- Department of Hepato-Biliary-Pancreatic Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhiwei Cai
- Department of Hepato-Biliary-Pancreatic Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Siqi Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Chongyi Jiang
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
- Department of Hepato-Biliary-Pancreatic Surgery, Huadong Hospital, Fudan University, Shanghai, China
- *Correspondence: Chongyi Jiang,
| |
Collapse
|
12
|
Bauer K, Henne-Bruns D, Manzini G. Analysis of the CONKO-001 trial: Is the validity of the study sufficient to recommend adjuvant chemotherapy for pancreatic cancer? INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2023; 34:29-40. [PMID: 34897105 DOI: 10.3233/jrs-210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Since randomized controlled trials have indicated that adjuvant chemotherapy prolongs survival and reduces recurrence rates after surgical resection of pancreatic adenocarcinoma, a gemcitabine based chemotherapy has become part of the interdisciplinary treatment concept for pancreatic cancer in accordance to current guidelines. OBJECTIVES The aim of this project was to analyse the validity of the CONKO-001 trial as a basis for the recommendation of adjuvant chemotherapy in many international guidelines. METHODS We analysed the validity of the CONKO-001 trial regarding study design, recruitment period, participating institutions, patient selection, randomisation, stratification, standardization of surgical treatment and histological examination, statistical methods and interpretation of results. We additionally analysed the study regarding the risk of bias using the RoB 2 Tool. Finally we reviewed the influence of the pharmaceutical industry and potential conflicts of interest. RESULTS We identified several shortcomings of the study concerning the study protocol, the participating clinics, the patient recruitment, the randomization pattern, the standardization of surgical treatment and histological examination, the statistical methods, the evaluation of the results and the influence of the pharmaceutical industry. According to the Cochrane RoB 2 Tool the study was judged to raise some concerns in three of the five risk domains for the outcome "overall survival". CONCLUSIONS Based on our review, the results of the CONKO-001-study should be revisited and critically reviewed. The recommendation to include adjuvant chemotherapy with gemcitabine deserves a critical appraisal.
Collapse
Affiliation(s)
- Katrin Bauer
- Department for General and Visceral Surgery, Clinic of Kempten, Kempten, Germany
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, University Hospital of Ulm, Ulm, Germany
| | - Giulia Manzini
- Department of General and Visceral Surgery, University Hospital of Ulm, Ulm, Germany
- Department of Visceral Surgery, Cantonal Hospital of Aarau, Aarau, Switzerland
| |
Collapse
|
13
|
de Almeida DRQ, Dos Santos AF, Wailemann RAM, Terra LF, Gomes VM, Arini GS, Bertoldi ERM, Reis EM, Baptista MS, Labriola L. Necroptosis activation is associated with greater methylene blue-photodynamic therapy-induced cytotoxicity in human pancreatic ductal adenocarcinoma cells. Photochem Photobiol Sci 2022; 22:729-744. [PMID: 36495407 DOI: 10.1007/s43630-022-00347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinomas (PDAC) are the fourth leading cause of death due to neoplasms. In view of the urgent need of effective treatments for PDAC, photodynamic therapy (PDT) appears as a promising alternative. However, its efficacy against PDAC and the mechanisms involved in cell death induction remain unclear. In this study, we set out to evaluate PDT's cytotoxicity using methylene blue (MB) as a photosensitizer (PS) (MB-PDT) and to evaluate the contribution of necroptosis in its effect in human PDAC cells. Our results demonstrated that MB-PDT induced significant death of different human PDAC models presenting two different susceptibility profiles. This effect was independent of MB uptake or its subcellular localization. We found that the ability of triggering necroptosis was determinant to increase the treatment efficiency. Analysis of single cell RNA-seq data from normal and neoplastic human pancreatic tissues showed that specific necroptosis proteins RIPK1, RIPK3 and MLKL presented significant higher expression levels in cells displaying a transformed phenotype providing further support to the use of approaches that activate necroptosis, like MB-PDT, as useful adjunct to surgery of PDAC to tackle the problem of microscopic residual disease as well as to minimize the chance of local and metastatic recurrence.
Collapse
Affiliation(s)
- Daria R Q de Almeida
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Ancély F Dos Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Rosangela A M Wailemann
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Letícia F Terra
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Vinícius M Gomes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Gabriel S Arini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Ester R M Bertoldi
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Eduardo M Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| | - Leticia Labriola
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), Cidade Universitária, Block 09, Room 976, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
14
|
Scheuermann S, Lehmann JM, Ramani Mohan R, Reißfelder C, Rückert F, Langejürgen J, Pallavi P. TissueGrinder, a novel technology for rapid generation of patient-derived single cell suspensions from solid tumors by mechanical tissue dissociation. Front Med (Lausanne) 2022; 9:721639. [PMID: 36582292 PMCID: PMC9793748 DOI: 10.3389/fmed.2022.721639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Recent advances hold promise of making personalized medicine a step closer to implementation in clinical settings. However, traditional sample preparation methods are not robust and reproducible. In this study, the TissueGrinder, a novel mechanical semi-automated benchtop device, which can isolate cells from tissue in a very fast and enzyme-free way is tested for cell isolation from surgically resected tumor tissues. Methods Thirty-three surgically resected tumor tissues from various but mainly pancreatic, liver or colorectal origins were processed by both novel TissueGrinder and explant method. An optimized processing program for tumors from pancreatic, liver or colorectal cancer was developed. The viability and morphological characteristics of the isolated cells were evaluated microscopically. Expression of pancreatic cancer markers was evaluated in cells isolated from pancreatic tumors. Finally, the effect of mechanical stress on the cells was evaluated by assessing apoptosis markers via western blotting. Results TissueGinder was more efficient in isolating cells from tumor tissue with a success rate of 75% when compared to explant method 45% in terms of cell outgrowth six weeks after processing. Cells isolated with TissueGinder had a higher abundance and were more heterogeneous in composition as compared to explant method. Mechanical processing of the cells with TissueGrinder does not lead to apoptosis but causes slight stress to the cells. Discussion Our results show that TissueGrinder can process solid tumor tissues more rapidly and efficiently and with higher success rate compared to the conventionally used explant method. The results of the study suggest that the TissueGrinder might be a suitable method for obtaining cells, which is important for its application in individualized therapy. Due to the great variance in different tumor entities and the associated individual tissue characteristics, a further development of the dissociation protocol for other types of tumors and normal tissue will be targeted.
Collapse
Affiliation(s)
| | | | - Ramkumar Ramani Mohan
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix Rückert
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Prama Pallavi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
15
|
Al-Akkad W, Acedo P, Vilia MG, Frenguelli L, Ney A, Rodriguez-Hernandez I, Labib PL, Tamburrino D, Spoletini G, Hall AR, Canestrari S, Osnato A, Garcia-Bernardo J, Sejour L, Vassileva V, Vlachos IS, Fusai G, Luong TV, Whittaker SR, Pereira SP, Vallier L, Pinzani M, Rombouts K, Mazza G. Tissue-Specific Human Extracellular Matrix Scaffolds Promote Pancreatic Tumour Progression and Chemotherapy Resistance. Cells 2022; 11:3652. [PMID: 36429078 PMCID: PMC9688243 DOI: 10.3390/cells11223652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Over 80% of patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed at a late stage and are locally advanced or with concurrent metastases. The aggressive phenotype and relative chemo- and radiotherapeutic resistance of PDAC is thought to be mediated largely by its prominent stroma, which is supported by an extracellular matrix (ECM). Therefore, we investigated the impact of tissue-matched human ECM in driving PDAC and the role of the ECM in promoting chemotherapy resistance. Decellularized human pancreata and livers were recellularized with PANC-1 and MIA PaCa-2 (PDAC cell lines), as well as PK-1 cells (liver-derived metastatic PDAC cell line). PANC-1 cells migrated into the pancreatic scaffolds, MIA PaCa-2 cells were able to migrate into both scaffolds, whereas PK-1 cells were able to migrate into the liver scaffolds only. These differences were supported by significant deregulations in gene and protein expression between the pancreas scaffolds, liver scaffolds, and 2D culture. Moreover, these cell lines were significantly more resistant to gemcitabine and doxorubicin chemotherapy treatments in the 3D models compared to 2D cultures, even after confirmed uptake by confocal microscopy. These results suggest that tissue-specific ECM provides the preserved native cues for primary and metastatic PDAC cells necessary for a more reliable in vitro cell culture.
Collapse
Affiliation(s)
- Walid Al-Akkad
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Pilar Acedo
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Maria-Giovanna Vilia
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Luca Frenguelli
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Alexander Ney
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | | | - Peter L. Labib
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Domenico Tamburrino
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Gabriele Spoletini
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Andrew R. Hall
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Simone Canestrari
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Anna Osnato
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, UK
| | | | - Leinal Sejour
- Cancer Research Institute, HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vessela Vassileva
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Ioannis S. Vlachos
- Cancer Research Institute, HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giuseppe Fusai
- Division of Surgery, Royal Free London NHS Foundation Trust, University College London, London NW3 2QG, UK
| | - Tu Vinh Luong
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Steven R. Whittaker
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| | - Stephen P. Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Ludovic Vallier
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, UK
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Krista Rombouts
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| | - Giuseppe Mazza
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
- Engitix Therapeutics, The Westworks, 195 Wood Lane, Shepherd’s Bush, London W12 7FQ, UK
| |
Collapse
|
16
|
Novel Antibody Exerts Antitumor Effect through Downregulation of CD147 and Activation of Multiple Stress Signals. JOURNAL OF ONCOLOGY 2022; 2022:3552793. [PMID: 36385956 PMCID: PMC9652086 DOI: 10.1155/2022/3552793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
CD147 is an immunoglobulin-like receptor that is highly expressed in various cancers and involved in the growth, metastasis, and activation of inflammatory pathways via interactions with various functional molecules, such as integrins, CD44, and monocarboxylate transporters. Through screening of CD147-targeting antibodies with antitumor efficacy, we discovered a novel rat monoclonal antibody #147D. This humanized IgG4-formatted antibody, h4#147D, showed potent antitumor efficacy in xenograft mouse models harboring the human PDAC cell line MIA PaCa-2, HCC cell line Hep G2, and CML cell line KU812, which featured low sensitivity to the corresponding standard-of-care drugs (gemcitabine, sorafenib, and imatinib, respectively). An analysis of tumor cells derived from MIA PaCa-2 xenograft mice treated with h4#147D revealed that cell surface expression of CD147 and its binding partners, including CD44 and integrin α3β1/α6β1, was significantly reduced by h4#147D. Inhibition of focal adhesion kinase (FAK), activation of multiple stress responsible signal proteins such as c-JunN-terminal kinase (JNK) and mitogen-activated protein kinase p38 (p38MAPK), and expression of SMAD4, as well as activation of caspase-3 were obviously observed in the tumor cells, suggesting that h4#147D induced tumor shrinkage by inducing multiple stress responsible signals. These results suggest that the anti-CD147 antibody h4#147D offers promise as a new antibody drug candidate.
Collapse
|
17
|
Rahnama N, Jahangir M, Alesaeid S, Kahrizi MS, Adili A, Mohammed RN, Aslaminabad R, Akbari M, Özgönül AM. Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives. Pathol Res Pract 2022; 236:153982. [PMID: 35779293 DOI: 10.1016/j.prp.2022.153982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between microRNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance.
Collapse
Affiliation(s)
- Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Samira Alesaeid
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihan University of Sulaimaniya, Kurdistan Region, Iraq; College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| | - Ramin Aslaminabad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Mert Özgönül
- Department of Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey.
| |
Collapse
|
18
|
Murakami T, Matsui Y. Laparoscopic duodenojejunostomy for malignant stenosis as a part of multimodal therapy: A case report. World J Clin Cases 2022; 10:5324-5330. [PMID: 35812656 PMCID: PMC9210882 DOI: 10.12998/wjcc.v10.i16.5324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/28/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Laparoscopic duodenojejunostomy (LDJ) has become the standard surgical procedure for superior mesenteric artery syndrome due to its sufficient outcome in terms of safety and symptom relief. However, there are only a few reports about LDJ for malignant stenosis and its indication remains uncertain.
CASE SUMMARY A 77-year-old woman with a history of pancreatic cancer (PC) treated with distal pancreatectomy with en bloc resection of the transverse colon 7 mo ago was admitted for recurrent vomiting. Imaging upon admission revealed marked distention of the duodenum and a tumor around the duodenojejunal flexure. She was diagnosed with malignant stenosis caused by local recurrence of PC. LDJ was performed with an uneventful postoperative course, followed by chemotherapy which gave her 10 mo overall survival.
CONCLUSION We think that LDJ is a valuable method for unresectable malignant stenosis around the duodenojejunal flexure as a part of multimodal therapy.
Collapse
Affiliation(s)
- Teppei Murakami
- Department of Surgery, Kobe City Hospital Organization Kobe City Center West Hospital, Kobe 653-0013, Hyogo, Japan
| | - Yugo Matsui
- Department of Surgery, Kobe City Hospital Organization Kobe City Center West Hospital, Kobe 653-0013, Hyogo, Japan
| |
Collapse
|
19
|
Rai ZL, Ranieri V, Palmer DH, Littler P, Ghaneh P, Gurusamy K, Manas D, Pizzo E, Psarelli EE, Gilmore R, Peddu P, Bartlett DC, de Liguori Carino N, Davidson BR. Treatment of unresectable locally advanced pancreatic cancer with percutaneous irreversible electroporation (IRE) following initial systemic chemotherapy (LAP-PIE) trial: study protocol for a feasibility randomised controlled trial. BMJ Open 2022; 12:e050166. [PMID: 35551086 PMCID: PMC9109032 DOI: 10.1136/bmjopen-2021-050166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Approximately 30% of patients with pancreas cancer have unresectable locally advanced disease, which is currently treated with systemic chemotherapy. A new treatment option of irreversible electroporation (IRE) has been investigated for these patients since 2005. Cohort studies suggest that IRE confers a survival advantage, but with associated, procedure-related complications. Selection bias may account for improved survival and there have been no prospective randomised trials evaluating the harms and benefits of therapy. The aim of this trial is to evaluate the feasibility of a randomised comparison of IRE therapy with chemotherapy versus chemotherapy alone in patients with locally advanced pancreatic cancer (LAPC). METHODS AND ANALYSIS Eligible patients with LAPC who have undergone first-line 5-FluoroUracil, Leucovorin, Irinotecan and Oxaliplatin chemotherapy will be randomised to receive either a single session of IRE followed by (if indicated) further chemotherapy or to chemotherapy alone (standard of care). Fifty patients from up to seven specialist pancreas centres in the UK will be recruited over a period of 15 months. Trial follow-up will be 12 months. The primary outcome measure is ability to recruit. Secondary objectives include practicality and technical success of treatment, acceptability of treatment to patients and clinicians and safety of treatment. A qualitative study has been incorporated to evaluate the patient and clinician perspective of the locally advanced pancreatic cancer with percutaneous irreversible electroporation trial. It is likely that the data obtained will guide the structure, the primary outcome measure, the power and the duration of a subsequent multicentre randomised controlled trial aimed at establishing the clinical efficiency of pancreas IRE therapy. Indicative procedure-related costings will be collected in this feasibility trial, which will inform the cost evaluation in the subsequent study on efficiency. ETHICS AND DISSEMINATION The protocol has received approval by London-Brent Research Ethics Committee reference number 21/LO/0077.Results will be analysed following completion of trial recruitment and follow-up. Results will be presented to international conferences with an interest in oncology, hepatopancreaticobiliary surgery and interventional radiology and be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER ISRCTN14986389.
Collapse
Affiliation(s)
- Zainab L Rai
- Division of Surgery and Interventional Science, University College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, UK
| | - Veronica Ranieri
- Research & Development, Tavistock and Portman NHS Foundation Trust, London, UK
- Science & Technology Studies, University College London, London, UK
| | - Daniel H Palmer
- Hepato-Pancreatco-Biliary Disease, University of Liverpool, Liverpool, Merseyside, UK
| | - Peter Littler
- Hepato-Pancreatico-Biliary Surgery, Freeman Hospital, Newcastle Upon Tyne, UK
| | - Pauleh Ghaneh
- Hepato-Pancreatco-Biliary Disease, University of Liverpool, Liverpool, Merseyside, UK
| | - Kurinchi Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Derek Manas
- Hepato-Pancreatico-Biliary Surgery, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Elena Pizzo
- Applied Health Research, University College London, London, UK
| | | | - Roopinder Gilmore
- Division of Surgery and Interventional Science, University College London, London, UK
- Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - Praveen Peddu
- Department of Radiology, King's College Hospital NHS Trust, London, UK
| | - David C Bartlett
- Hepato-Pancreatico-Biliary Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, UK
| | | | | |
Collapse
|
20
|
Wang AM, Qiu R, Zhang D, Zhao XY. Therapeutic effects of an innovative BS-HH-002 drug on pancreatic cancer cells via induction of complete MCL-1 degradation. Transl Oncol 2022; 15:101288. [PMID: 34847421 PMCID: PMC8633684 DOI: 10.1016/j.tranon.2021.101288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
BS-HH-002 is a newly developed drug with excellent antitumor activity, which resulted from the modification and optimization of the side structure of the homoharringtonine (HHT). It is particularly efficient in treatment for acute myeloid leukemia and myelodysplastic syndromes. Here we tested whether BS-HH-002 also had anti-cancer effects on solid tumors, especially pancreatic cancer. The results showed that BS-HH-002 treatment resulted in the complete degradation of the anti-apoptosis protein MCL-1, thereby inhibiting proliferation and inducing apoptosis of pancreatic cancer cells. In contrast, BCL-2 and BCL-XL protein levels were still detected in apoptotic cells. Further, we compared HHT and BS-HH-002 in terms of PK and heart toxicity in animals. Compared to HHT, BS-HH-002 quickly reached high blood concentration after intravenous injection or oral administration, without causing obvious cardiac toxicity. These results indicate that BS-HH-002 is a promising new anti-cancer drug to treat pancreatic and other solid tumors.
Collapse
Affiliation(s)
- A-Min Wang
- Bensheng Pharmaceuticals Co., Ltd., Room 102, 131 Kaiqing Road, East Zhangjiang, Pudong, Shanghai 201201, China.
| | - Ru Qiu
- Bensheng Pharmaceuticals Co., Ltd., Room 102, 131 Kaiqing Road, East Zhangjiang, Pudong, Shanghai 201201, China.
| | - Duo Zhang
- Bensheng Pharmaceuticals Co., Ltd., Room 102, 131 Kaiqing Road, East Zhangjiang, Pudong, Shanghai 201201, China.
| | - Xiao-Yan Zhao
- Bensheng Pharmaceuticals Co., Ltd., Room 102, 131 Kaiqing Road, East Zhangjiang, Pudong, Shanghai 201201, China.
| |
Collapse
|
21
|
Bratanic A, Bozic D, Mestrovic A, Martinovic D, Kumric M, Ticinovic Kurir T, Bozic J. Role of endoscopic ultrasound in anticancer therapy: Current evidence and future perspectives. World J Gastrointest Oncol 2021; 13:1863-1879. [PMID: 35070030 PMCID: PMC8713319 DOI: 10.4251/wjgo.v13.i12.1863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/17/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The digestive system is one of the most common sites of malignancies in humans. Since gastrointestinal tumors represent a massive global health burden both in terms of morbidity and health care expenditures, scientists continuously develop novel diagnostic and therapeutic methods to ameliorate the detrimental effects of this group of diseases. Apart from the well-established role of the endoscopic ultrasound (EUS) in the diagnostic course of gastrointestinal and hepatobiliary malignancies, we have recently become acquainted with a vast array of its therapeutic possibilities. A multitude of previously established, evidence-based methods that might now be guided by the EUS emerged: Radiofrequency ablation, brachytherapy, fine needle injection, celiac plexus neurolysis, and endoscopic submucosal dissection. In this review we endeavored to provide a comprehensive overview of the role of these methods in different malignancies of the digestive system, primarily in the treatment and symptom control in pancreatic cancer, and additionally in the management of hepatic, gastrointestinal tumors, and pancreatic cysts.
Collapse
Affiliation(s)
- Andre Bratanic
- Department of Gastroenterology and Hepatology, University Hospital of Split, Split 21000, Croatia
| | - Dorotea Bozic
- Department of Gastroenterology and Hepatology, University Hospital of Split, Split 21000, Croatia
| | - Antonio Mestrovic
- Department of Gastroenterology and Hepatology, University Hospital of Split, Split 21000, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Department of Endocrinology, University Hospital of Split, Split 21000, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
22
|
Murakawa Y, Ootsuka K, Abue M. The Appropriate First-Line Chemotherapy Regimen for Incurable Pancreatic Cancer in Clinical Practice: A Consideration of Patients' Overall Survival and Quality of Life. J Pancreat Cancer 2021; 7:48-56. [PMID: 34901695 PMCID: PMC8655810 DOI: 10.1089/pancan.2021.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose: For incurable pancreatic cancer, the therapeutic goal is to prolong survival and maintain the quality of life (QOL). Unexpected outpatient consultation (OCT) and emergency hospitalization lead to QOL deterioration. The National Comprehensive Cancer Network (NCCN) guidelines recommend 5-fluorouracil/leucovorin, oxaliplatin, and irinotecan (FOLFIRINOX) and gemcitabine plus albumin-bound paclitaxel (nabPTX+GEM) as the preferred first-line regimens. Japanese clinical practice guidelines further recommend GEM and tegafur/gimeracil/oteracil potassium (S-1). Currently, no treatment strategy considers QOL at any stage during a patient's clinical course. Methods: In this study, hospital-free survival (HFS), defined as the period without hospitalization and OCT, was introduced as a new indicator of the qualitative aspect of overall survival (OS). We compared OS, length of hospitalization (LOH), OCT, and HFS for the four first-line chemotherapy groups. Results: No significant difference was observed in the median OS and HFS, nor was there a strong correlation between OS and LOH, based on the four first-line chemotherapy groups. In contrast, there were strong correlations between OS and OCT and between OS and HFS in all first-line chemotherapy groups. The ratio of OCT to OS was similar for mFOLFIRINOX and nabPTX+GEM. S-1 had the lowest OCT-to-OS ratio. The ratio of HFS to OS declined from highest to lowest in the order S-1, nabPTX+GEM, mFOLFIRINOX, and GEM. Conclusion: Our findings suggested existence of correlation differences between OS and HFS between first-line mFOLFIRINOX and first-line nabPTX+GEM. In addition, a good HFS was obtained with S-1 alone in some cases. In the future, clinical trials for chemotherapy should examine QOL during the entire clinical course.
Collapse
Affiliation(s)
- Yasuko Murakawa
- Department of Cancer Chemotherapy and Miyagi Cancer Center, Natori, Japan
| | - Kazunori Ootsuka
- Department of Cancer Chemotherapy and Miyagi Cancer Center, Natori, Japan
| | - Makoto Abue
- Department of Gastroenterology, Miyagi Cancer Center, Natori, Japan
| |
Collapse
|
23
|
Wang L, Li M, Chen F. microRNA-26a represses pancreatic cancer cell malignant behaviors by targeting E2F7. Discov Oncol 2021; 12:55. [PMID: 35201478 PMCID: PMC8777553 DOI: 10.1007/s12672-021-00448-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 01/06/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) exerts key roles in the development of pancreatic cancer (PCa). miR-26a is reportedly a tumor suppressor in cancers. However, whether miR-26a modulates PCa progression is poorly understood. Here, we found that miR-26a was down-regulated in PCa. Overexpressed miR-26a suppressed PCa cell proliferation, colony formation, and tumor stem cell properties. Mechanically, the transcription factor E2F7 is a downstream target of miR-26a. miR-26a decreased E2F7 expression through binding to the 3'-untranslated region (UTR) of E2F7. Decreased miR-26a in PCa tissues was inversely correlated with E2F7. The inhibitory effects of miR-26a in PCa were reversed by E2F7 overexpression. Consistently, the knockout of E2F7 further significantly inhibited the growth of PCa cells combined with miR-26a overexpression. Further study revealed that E2F7 bound the promoter of vascular endothelial growth factor A (VEGFA), a key factor in angiogenesis, and transcriptionally activated the expression of VEGFA. miR-26a overexpression attenuated the effects of E2F7 on VEGFA promotion. Our results uncovered the novel function of miR-26a/E2F7/VEGFA in PCa, making miR-26a a possible target for PCa treatment.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meijun Li
- Department of Blood, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical University, No. 2 of the People Street, Gu Ta district, Jinzhou, 121001, Liao Ning, China.
| |
Collapse
|
24
|
Dai W, Qiu X, Lu C, Zou Z, Sha H, Kong W, Liu B, Du J. AGIG Chemo-Immunotherapy in Patients With Advanced Pancreatic Cancer: A Single-Arm, Single-Center, Phase 2 Study. Front Oncol 2021; 11:693386. [PMID: 34722242 PMCID: PMC8548663 DOI: 10.3389/fonc.2021.693386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Background To date, chemotherapy remains the only effective treatment of unresectable pancreatic adenocarcinoma. In the past few years, the interest in immunological anticancer therapy rises sharply. AGIG is a novel chemo-immunotherapy regimen that combines nab-paclitaxel + gemcitabine chemotherapy with sequential recombinant interleukin-2 (IL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF) therapy. We conducted a single-arm prospective phase II study to determine the efficacy and safety of the first-line treatment of advanced pancreatic cancer with AGIG regimen. Methods Nab-paclitaxel (125 mg/m2) and gemcitabine (1000 mg/m2) were administered intravenously to all patients on days 1 and 8 triweekly, interleukin-2 (1000000U) and GM-CSF (100 µg) were administered subcutaneously on days 3-5 after chemotherapy. The primary end point was ORR by the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary end points included safety profile, progression-free survival (PFS), overall survival (OS). Patients’ conditions along with the efficacy and safety were assessed every two cycles. Results Between 11/2018 and 01/2020, sixty-four patients were enrolled. In the sixty-four evaluable patients, the disease control rate (DCR) and overall response rate (ORR) were 76.6% and 43.75%, respectively. The median follow-up time was 12.1 (range 7.1–22.4) months. The median PFS was 5.7 (range 1.63–15.8) months. The median OS was 14.2 (range 2.9–22.0) months. The most common adverse event was fever (75%). The incidence of III/IV grade neutropenia was 4.69%. In subgroup analyses, we found that eosinophil count in the blood elevated three times higher than baseline level predicted a longer survival. Conclusions The AGIG chemo-immunotherapy regimen has presented favorable ORR, OS, and manageable toxicities as first-line therapeutic strategy of advanced pancreatic cancer treatment. This regimen may be a novel reliable therapeutic option for patients with preserved performance status. The improvement of treatment efficiency may be related to the activation of non-specific immune response. Clinical Trial Registration https://clinicaltrials.gov/. identifier NCT03768687.
Collapse
Affiliation(s)
- Wangshu Dai
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.,The Cadre Health Care Ward, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Qiu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Changchang Lu
- The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Huizi Sha
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Weiwei Kong
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.,The Comprehensive Cancer Center of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Pekarek L, Fraile-Martinez O, Garcia-Montero C, Alvarez-Mon MA, Acero J, Ruiz-Llorente L, García-Honduvilla N, Albillos A, Buján J, Alvarez-Mon M, Guijarro LG, Ortega MA. Towards an updated view on the clinical management of pancreatic adenocarcinoma: Current and future perspectives. Oncol Lett 2021; 22:809. [PMID: 34630716 PMCID: PMC8490971 DOI: 10.3892/ol.2021.13070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer has a dire prognosis and will represent the second leading cause of cancer death in the next 10 years. The multifactorial approach represents one of the main issues in controlling the extension of this neoplasm. In recent years, the characteristics of the tumor microenvironment, metastasis mechanisms and the relationship between immune system and neoplastic cells have been described, which has made it possible to understand the pathophysiology of pancreatic adenocarcinoma. Currently, there is a failure to provide an effective preventive method or early detection, so patients present with an advanced stage at the time of diagnosis. Despite numerous efforts, little progress has been made in clinical outcome and in improving survival in long term. Therefore, in the recent years, diverse diagnostic tests, treatments and possible approaches have been developed in the fields of radiotherapy, chemotherapy and surgery to find a combination of them that improves life expectancy in patients diagnosed with pancreatic cancer. At the moment, numerous clinical trials are being conducted to evaluate preventive diagnostic procedures such as serological markers or perfecting available imaging tests. On the other hand, implementation of immunotherapy is being studied in a neoplasm that has lagged in the application of this procedure since present possible treatments do not substantially improve quality of life. Therefore, the purpose of our study is to summarize the main progresses that have been made in the diagnosis, treatment and screening of this disease, explaining the limitations that have been observed and analyzing future prospects in the management of this illness.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Miguel A. Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Julio Acero
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
| | - Lidia Ruiz-Llorente
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Department of Gastroenterology and Hepatology, Ramón y Cajal University Hospital, University of Alcalá, Ramón y Cajal Institute for Health Research, 28034 Madrid, Spain
- Biomedical Research Networking Center of Hepatic and Digestive Diseases, Institute of Health Carlos III, 28034 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Biomedical Research Networking Center of Hepatic and Digestive Diseases, Institute of Health Carlos III, 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| |
Collapse
|
26
|
Solipuram V, Gopalakrishna H, Nair G, Mohan A. Efficacy and Safety of PEGPH20 in Pancreatic Cancer: Systematic Review and Meta-analysis. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717666210616152341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Pancreatic cancer is an aggressive tumor, and an estimated 57,600 new
cases and 47,050 deaths were reported in 2020 in the US alone. Recent studies have targeted the tumor
microenvironment (TME) for better delivery of systemic chemotherapy, like PEGPH20,
which degrades hyaluronic acid in the extracellular matrix (ECM). A meta-analysis of these Randomized
controlled trials (RCTs) to test the efficacy of PEGPH20 was performed.
Methods:
A systematic search was performed using PubMed, Embase, and Cochrane library without
language limitations from inception to July 30, 2020. A total of 59 articles were identified, and
3 RCTs were included in the final analysis. The primary outcome was progression-free survival
(PFS), and secondary outcomes were overall survival (OS), deaths from adverse events, thromboembolic
events, serious adverse events (SAE), and febrile neutropenia.
Results:
There was no statistically significant improvement in PFS (HR= 0.94; 95%CI (0.79,
1.11)) in the PEGPH20 group when compared to the standard treatment/placebo group. There was
no significant difference among OS (HR= 0.99, 95%CI (0.83, 1.17), deaths from adverse events (RR=
0.97; 95%CI (0.54, 1.73)), thromboembolic events (RR= 1.49; 95%CI (0.92, 2.44)), and febrile
neutropenia (RR= 0.88; 95%CI (0.45, 1.72), but a statistically significant increase in SAE (RR =
1.59; 95%CI (1.01, 2.52) in the PEGPH20 group compared to the placebo group was observed.
Conclusion:
This meta-analysis showed that PEGPH20 did not improve the PFS or OS. Moreover,
there was an increased incidence of serious adverse events using PEGPH20 compared to standard
therapies.
Collapse
Affiliation(s)
- Vinod Solipuram
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD,United States
| | - Harish Gopalakrishna
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD,United States
| | - Gayatri Nair
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD,United States
| | - Akhila Mohan
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD,United States
| |
Collapse
|
27
|
Inhibition of JAK2/STAT3 signaling pathway by panaxadiol limits the progression of pancreatic cancer. Aging (Albany NY) 2021; 13:22830-22842. [PMID: 34623971 PMCID: PMC8544303 DOI: 10.18632/aging.203575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death with the characteristics of chemoresistance and early metastasis. Panaxadiol, a triterpenoid saponin extracted from the roots of American ginseng, has been proved to display anti-tumor activity in colon cancer. In this study, we found panaxadiol significantly inhibited proliferation, and induced apoptosis in human pancreatic cancer cell lines PANC-1 and Patu8988 in a dose-dependent manner. Furthermore, the expression of apoptosis-related proteins (Bax, Bcl2, Cleaved-caspase3) was detected via western blot and immunofluorescence staining. In addition, panaxadiol was also found to inhibit the migration of pancreatic cancer cells by wound healing and transwell assays. In vivo, the growth of xenograft pancreatic cancer models was also notably suppressed by panaxadiol compared to the control group. Moreover, the down-regulation of JAK2-STAT3 signaling pathway was responsible for the underlying pro-apoptosis mechanism of panaxadiol, and this result was in good agreement with molecular docking analysis between panaxadiol and STAT3. In conclusion, our work comprehensively explored the anti-tumor ability in PANC-1 and Patu8988 cells of panaxadiol and provided a potential choice for the clinical treatment of pancreatic cancer patients.
Collapse
|
28
|
Shang M, Weng L, Xu G, Wu S, Liu B, Yin X, Mao A, Zou X, Wang Z. TRIM11 suppresses ferritinophagy and gemcitabine sensitivity through UBE2N/TAX1BP1 signaling in pancreatic ductal adenocarcinoma. J Cell Physiol 2021; 236:6868-6883. [PMID: 33629745 DOI: 10.1002/jcp.30346] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Gemcitabine is first-line chemotherapy for pancreatic cancer, however, the development of resistance limits its effectiveness. The tripartite motif-containing 11 (TRIM11) protein plays crucial roles in tumor development and undergoes auto-polyubiquitination to promote interactions in selective autophagy. Therefore, Understanding whether TRIM11 is involved in ferritinophagy and gemcitabine resistance in pancreatic cancer is critical in developing pancreatic cancer therapeutics. TRIM11 expression was validated by Western blot analysis, real-time polymease chain reaction, and immunohistochemical staining. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Colony formation assays were performed to investigate pancreatic ductal adenocarcinomas (PDAC) cell viability. Mouse xenograft model of PDAC cells was established to verify the role of TRIM11 in vivo. Coimmunoprecipitation was used to identify the reciprocal regulation between TRIM11 and UBE2N. In this study, we found that TRIM11 expression were higher in PDAC cells and tissues. TRIM11 overexpression promotes PDAC cell proliferation in vitro and tumor growth in vivo. Decreased expression of TRIM11 in PDAC patients is associated with decreased UBE2N and increased TAX1BP1 expression. Coimmunoprecipitation established that TRIM11 interacts and colocalizes with UBE2N. Mechanistically, TRIM11 promoted gemcitabine resistance and suppressed ferritinophagy through UBE2N-TAX1BP1 signaling. Our findings identify TRIM11 as a key regulator of TAX1BP1 signaling with a crucial role in ferritinophagy and gemcitabine resistance in PDAC.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Autophagy/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Ferroptosis/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Signal Transduction
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Tumor Burden/drug effects
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Xenograft Model Antitumor Assays
- Gemcitabine
- Mice
Collapse
Affiliation(s)
- Mingyi Shang
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Weng
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guifang Xu
- Department of gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shaoqiu Wu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Yin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiwu Mao
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoping Zou
- Department of interventional radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongmin Wang
- Department of gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
29
|
Mollinedo F, Gajate C. Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers (Basel) 2021; 13:4173. [PMID: 34439330 PMCID: PMC8394177 DOI: 10.3390/cancers13164173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy-the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells-including pancreatic cancer cells-and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
30
|
Kuo SH, Yang SH, Wei MF, Lee HW, Tien YW, Cheng AL, Yeh KH. Contribution of nuclear BCL10 expression to tumor progression and poor prognosis of advanced and/or metastatic pancreatic ductal adenocarcinoma by activating NF-κB-related signaling. Cancer Cell Int 2021; 21:436. [PMID: 34412631 PMCID: PMC8375138 DOI: 10.1186/s12935-021-02143-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously demonstrated that nuclear BCL10 translocation participates in the instigation of NF-κB in breast cancer and lymphoma cell lines. In this study, we assessed whether nuclear BCL10 translocation is clinically significant in advanced and metastatic pancreatic ductal adenocarcinoma (PDAC). METHOD AND MATERIALS We analyzed the expression of BCL10-, cell cycle-, and NF-κB- related signaling molecules, and the DNA-binding activity of NF-κB in three PDAC cell lines (mutant KRAS lines: PANC-1 and AsPC-1; wild-type KRAS line: BxPC-3) using BCL10 short hairpin RNA (shBCL10). To assess the anti-tumor effect of BCL10 knockdown in PDAC xenograft model, PANC-1 cells treated with or without shBCL10 transfection were inoculated into the flanks of mice. We assessed the expression patterns of BCL10 and NF-κB in tumor cells in 136 patients with recurrent, advanced, and metastatic PDAC using immunohistochemical staining. RESULTS We revealed that shBCL10 transfection caused cytoplasmic translocation of BCL10 from the nuclei, inhibited cell viability, and enhanced the cytotoxicities of gemcitabine and oxaliplatin in three PDAC cell lines. Inhibition of BCL10 differentially blocked cell cycle progression in PDAC cell lines. Arrest at G1 phase was noted in wild-type KRAS cell lines; and arrest at G2/M phase was noted in mutant KRAS cell lines. Furthermore, shBCL10 transfection downregulated the expression of phospho-CDC2, phospho-CDC25C, Cyclin B1 (PANC-1), Cyclins A, D1, and E, CDK2, and CDK4 (BxPC-3), p-IκBα, nuclear expression of BCL10, BCL3, and NF-κB (p65), and attenuated the NF-κB pathway activation and its downstream molecule, c-Myc, while inhibition of BCL10 upregulated expression of p21, and p27 in both PANC-1 and BxPC-3 cells. In a PANC-1-xenograft mouse model, inhibition of BCL10 expression also attenuated the tumor growth of PDAC. In clinical samples, nuclear BCL10 expression was closely associated with nuclear NF-κB expression (p < 0.001), and patients with nuclear BCL10 expression had the worse median overall survival than those without nuclear BCL10 expression (6.90 months versus 9.53 months, p = 0.019). CONCLUSION Nuclear BCL10 translocation activates NF-κB signaling and contributes to tumor progression and poor prognosis of advanced/metastatic PDAC.
Collapse
Affiliation(s)
- Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan.,Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan.,Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Feng Wei
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiao-Wei Lee
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kun-Huei Yeh
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan S Rd, Taipei, Taiwan. .,Cancer Research Center, National Taiwan University College of Medicine, Taipei, Taiwan. .,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
31
|
Fan D, Yu S, Yang Y, Qu S. Pyoluteorin Induces Apoptosis and Autophagy in NSCLC Cells. Biol Pharm Bull 2021; 44:976-983. [PMID: 34193693 DOI: 10.1248/bpb.b21-00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pyoluteorin is a natural occurring antibiotic and its anti-tumor activity has rarely been reported. This study aims to investigate the anti-tumor effects of pyoluteorin on human non-small cell lung cancer (NSCLC) cells. The cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was determined through caspase3 activity assay and immunoblotting. Autophagy was measured by transmission electron microscope (TEM) and immunostaining. The autophagy-related proteins were detected through immunoblotting. We found that pyoluteorin showed significant anti-tumor effects on human NSCLC cell lines H1299 (IC50 = 1.57 µM) and H2030 (IC50 = 1.94 µM). Moreover, pyoluteorin could induce apoptosis and autophagy as evidence by the upregulation of caspase3 activity, the accumulation of LC3 and expression of apoptosis or autophagy related proteins. In addition, pyoluteorin induced autophagy through c-Jun N-terminal kinase/B-cell lymphoma-2 (JNK/Bcl-2) signal pathway. Blocking JNK/Bcl-2 pathway significantly attenuated pyoluteorin-induced autophagy. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) or Beclin1 knockout greatly promoted pyoluteorin-induced apoptosis and cell death. Our results showed that pyoluteorin could induce both apoptosis and autophagy in human NSCLC cells. Combination of pyoluteorin with autophagy inhibitior significantly promoted pyoluteorin-induced apoptosis and may be a potential anticancer strategy in the NSCLC therapy.
Collapse
Affiliation(s)
- Daping Fan
- Department of Respiratory, First Affiliated Hospital of Harbin Medical University
| | - Shihuan Yu
- Department of Respiratory, First Affiliated Hospital of Harbin Medical University
| | - Yue Yang
- Department of Respiratory, First Affiliated Hospital of Harbin Medical University
| | - Siying Qu
- Department of Respiratory, First Affiliated Hospital of Harbin Medical University
| |
Collapse
|
32
|
Hani U, Osmani RAM, Siddiqua A, Wahab S, Batool S, Ather H, Sheraba N, Alqahtani A. A systematic study of novel drug delivery mechanisms and treatment strategies for pancreatic cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Tang M, Lozano Hernandez L, Reginald-Opara JN, Svirskis D, Leung E, Wang H, Wu Z. Zebularine suppressed gemcitabine-induced senescence and improved the cellular and plasma pharmacokinetics of gemcitabine, augmented by liposomal co-delivery. Int J Pharm 2021; 602:120659. [PMID: 33933647 DOI: 10.1016/j.ijpharm.2021.120659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Chemoresistance is a major factor driving cancer recurrence. This study investigated the potential of zebularine, a dual cytidine deaminase (CDA)/epigenetic inhibitor, to circumvent gemcitabine-resistance in pancreatic cancer using a nanomedicine co-delivery approach. The mRNA expression of key metabolic enzymes, including CDA for gemcitabine deactivation in a gemcitabine-resistant cell line Gr2000 and its parental MIA PaCa-2 was compared using quantitative reverse transcription polymerase chain reaction. A highly gemcitabine-resistant population (HRP) in Gr2000 were characterised for their growth pattern, β-galactosidase activity (a hallmark of senescence) and chemosensitivity to zebularine after isolation. The CDA inhibition effects of zebularine on the intracellular gemcitabine accumulation and pharmacokinetics in rats when co-delivered with pH-sensitive liposomes (pSL) were investigated. Gr2000 had a 3-time upregulated mRNA expression and enzyme activity for CDA. The HRP (28% of bulk Gr2000) were predominately senescent cells which re-proliferated following a growth arrest for a week. Zebularine suppressed the regrowth of senescent cells, meanwhile enhanced cellular gemcitabine concentration by 2-fold. When co-delivered with pSL, zebularine increased cellular gemcitabine concentration by 4-fold, and extended the half-life of gemcitabine in plasma by 22-fold in rats. In conclusion, multiple mechanisms including therapy-induced senescence were identified with gemcitabine-resistance. Co-delivery of zebularine using liposomes could provide multifaceted benefits in gemcitabine therapy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lina Lozano Hernandez
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Joy N Reginald-Opara
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
34
|
Wu T, Jin T. Prevention and treatment of digestive tract issues induced by postoperative adjuvant chemotherapy for pancreatic cancer using Terra Flava Usta. Am J Transl Res 2021; 13:3182-3189. [PMID: 34017487 PMCID: PMC8129296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects and possible mechanism of prevention and treatment of digestive tract reactions to postoperative adjuvant chemotherapy for pancreatic cancer (PC) using terra flava usta. METHODS A total of 75 PC patients with postoperative adjuvant chemotherapy who were admitted to our hospital from July 2016 to August 2019 were selected and randomly divided into a control group (CG) (n=37) and an observation group (OG) (n=38). Thirty min before chemotherapy, the CG received 8 mg of ondansetron via an intravenous drip, while the OG received 8 mg of ondansetron via an intravenous drip and terra flava usta. The grades of acute nausea and vomiting and delayed nausea and vomiting were compared between the two groups. The levels of gastrin (GAS), motilin (MTL), vasoactive peptide (VIP), hemoglobin (Hb), prealbumin (PA), and albumin (ALB), the proportion of CD4+, CD8+ and NK cells in T cell subsets, and the levels of 5-hydroxytryptamine (5-HT) and substance P (SP) were compared between the two groups. RESULTS The grades of delayed nausea and vomiting in the OG were superior to those in the CG (P < 0.05). The OG had higher levels of GAS and MTL and lower level of VIP than the CG after chemotherapy (P < 0.05). After chemotherapy, the levels of Hb, PA and ALB in the OG were higher than those in the CG (P < 0.05). After chemotherapy, the proportion of CD4+ and NK cells in the OG were higher than those in the CG, while the proportion of CD8+ in the OG was lower than that in the CG (P < 0.05). The serum 5-HT level in the acute phase and the delayed phase was higher than that before chemotherapy (P < 0.05), and the serum 5-HT level in the delayed phase was lower than that in the acute phase (P < 0.05). There was no significant difference in serum 5-HT level between the two groups in the acute phase and the delayed phase (P > 0.05). Compared with that before chemotherapy, SP levels in the OG decreased in the acute phase and the delayed phase, while SP levels in the CG did not change significantly, and SP levels in the OG were lower than those in the CG (P < 0.05). CONCLUSION Terra flava usta can effectively prevent and treat digestive tract reactions (e.g., delayed nausea and vomiting) induced by postoperative adjuvant chemotherapy for PC and protect gastrointestinal function, nutritional status and immune functions of PC patients. The mechanism of prevention and treatment of delayed digestive tract reactions after chemotherapy with terra flava usta may be related to the regulation of SP content. Therefore, terra flava usta is worthy of promotion and implementation.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Traditional Chinese Medicine, Central Hospital Affiliated to Shandong First Medical UniversityJi’nan 250013, Shandong, China
| | - Tao Jin
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical UniversityJi’nan 250013, Shandong, China
| |
Collapse
|
35
|
Veschi S, Carradori S, De Lellis L, Florio R, Brocco D, Secci D, Guglielmi P, Spano M, Sobolev AP, Cama A. Synthesis and evaluation of a large library of nitroxoline derivatives as pancreatic cancer antiproliferative agents. J Enzyme Inhib Med Chem 2021; 35:1331-1344. [PMID: 32588672 PMCID: PMC7470072 DOI: 10.1080/14756366.2020.1780228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest carcinomas and in most cases, which are diagnosed with locally advanced or metastatic disease, current therapeutic options are highly unsatisfactory. Based on the anti-proliferative effects shown by nitroxoline, an old urinary antibacterial agent, we explored a large library of newly synthesised derivatives to unravel the importance of the OH moiety and pyridine ring of the parent compound. The new derivatives showed a valuable anti-proliferative effect and some displayed a greater effect as compared to nitroxoline against three pancreatic cancer cell lines with different genetic profiles. In particular, in silico pharmacokinetic data, clonogenicity assays and selectivity indexes of the most promising compounds showed several advantages for such derivatives, as compared to nitroxoline. Moreover, some of these novel compounds had stronger effects on cell viability and/or clonogenic capacity in PC cells as compared to erlotinib, a targeted agent approved for PC treatment.
Collapse
Affiliation(s)
- Serena Veschi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rosalba Florio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Davide Brocco
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Mattia Spano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Anatoly P Sobolev
- Istituto per i Sistemi Biologici, Laboratorio di Risonanza Magnetica "Segre-Capitani", CNR, Monterotondo (Rome), Italy
| | - Alessandro Cama
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
36
|
Stellate Cells Aid Growth-Permissive Metabolic Reprogramming and Promote Gemcitabine Chemoresistance in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13040601. [PMID: 33546284 PMCID: PMC7913350 DOI: 10.3390/cancers13040601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The great majority, more than 90%, of patients with pancreatic ductal adenocarcinoma (PDAC) die within less than five years after detection of the disease, despite recent treatment advances. The poor prognosis is related to late diagnosis, aggressive disease progression, and tumor resistance to conventional chemotherapy. PDAC tumor tissue is characterized by dense fibrosis and poor nutrient availability. A large portion of the tumor is made up of stromal fibroblasts, the pancreatic stellate cells (PSCs), which are known to contribute to tumor progression in several ways. PSCs have been shown to act as an alternate energy source, induce drug resistance, and inhibit drug availability in tumor cells, however, the underlying exact molecular mechanisms remain unknown. In this literature review, we discuss recent available knowledge about the contributions of PSCs to the overall progression of PDAC via changes in tumor metabolism and how this is linked to therapy resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.
Collapse
|
37
|
Uchino Y, Muroya D, Yoshitomi M, Shichijo S, Yamada A, Sasada T, Yamada T, Okuda K, Itoh K, Yutani S. Investigation of factors associated with reduced clinical benefits of personalized peptide vaccination for pancreatic cancer. Mol Clin Oncol 2020; 14:39. [PMID: 33437477 PMCID: PMC7788558 DOI: 10.3892/mco.2020.2201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/12/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to determine the factors associated with reduced clinical benefits of personalized peptide vaccination (PPV) for pancreatic cancer. Phase II PPV clinical trials comprising 309 (8 non-advanced and 301 advanced-stage) patients with pancreatic cancer were conducted. Two to four peptides were selected among a set of 31 different peptides as vaccine candidates for personalized peptide vaccination based on human leukocyte antigen types and preexisting peptide-specific IgG levels, and subcutaneously injected. The selected peptides were subcutaneously injected. Of the 309 patients, 81 failed to complete the 1st PPV cycle due to rapid disease progression, and their median overall survival [2.1 months; 95% confidence interval (CI), 1.8-2.7] was significantly shorter than that of the remaining 228 patients (8.4 months; 95% CI, 8.4-9.9; P<0.01). ‘Immune boosting’ was defined when IgG levels before vaccination increased more than 2-fold after vaccination. Immune boosting was observed in the majority of patients with PPV irrespective of whether or not they received concomitant chemotherapy. Additionally, patients demonstrating immune boosting exhibited longer survival rates. Although the positive-response rates and peptide-specific IgG levels in pre- and post-vaccination samples differed among the 31 peptides, patients exhibiting immune boosting in response to each of the vaccinated peptides demonstrated longer survival times. Pre-vaccination factors associated with reduced clinical benefits were high c-reactive protein (CRP) levels, high neutrophil counts, lower lymphocyte and red blood cell counts, advanced disease stage and the greater number of chemotherapy courses prior to the PPV treatment. The post-vaccination factors associated with lower clinical benefits were PPV monotherapy and lower levels of immune boosting. In conclusion, pre-vaccination inflammatory signatures, rather than pre- or post-vaccination immunological signatures, were associated with reduced clinical benefits of personalized peptide vaccination (PPV) for pancreatic cancer.
Collapse
Affiliation(s)
- Yoshihiro Uchino
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839-0823, Japan.,Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Daisuke Muroya
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Munehiro Yoshitomi
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shigeki Shichijo
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839-0823, Japan
| | - Akira Yamada
- Cancer Vaccine Development Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Tetsuro Sasada
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center Research Institute, Kanagawa, Yokohama 241-8515, Japan
| | - Teppei Yamada
- Department of Gastroenterological Surgery, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | - Koji Okuda
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839-0823, Japan
| | - Shigeru Yutani
- Cancer Vaccine Center, Kurume University, Kurume, Fukuoka 839-0823, Japan
| |
Collapse
|
38
|
Sheikh M, Masoudi S, Bakhshandeh R, Moayyedkazemi A, Zamani F, Nikfam S, Mansouri M, Shishavan NG, Nikeghbalian S, Brennan P, Malekzadeh R, Pourshams A. Survival features, prognostic factors, and determinants of diagnosis and treatment among Iranian patients with pancreatic cancer, a prospective study. PLoS One 2020; 15:e0243511. [PMID: 33275621 PMCID: PMC7717574 DOI: 10.1371/journal.pone.0243511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Investigating the survival features, and determinants of treatment and stage at presentation in Iran. METHODS 461 patients with pancreatic ductal adenocarcinoma (PC) were prospectively enrolled from Shariati hospital, Tehran, Iran, between 2011-2018. All patients underwent endoscopic ultrasonography, computed tomography scanning, and physical examination. Validated questionnaire was completed for the participants and all were actively followed on monthly basis. RESULTS Median survival time was 6.5 months, and 1-, and 5-year survival rates were 26.2%, and 1.5%. Patients who were older (p<0.001), illiterate (p = 0.004), unmarried (p = 0.003), rural inhabitant (p = 0.013), opium user (p = 0.039), and had lower body mass index (BMI) (p = 0.002) had lower overall survival. Tumors located in the head of pancreas were more commonly diagnosed at lower stages (p<0.001). Only 10.4% of patients underwent surgery who were more commonly educated (p<0.001), married (p = 0.005), had a tumor located in the head of pancreas (p = 0.016), and were diagnosed at lower stages (p<0.001). After adjustment for potential confounders and risk factors, rural inhabitance (HR: 1.33 (95% CI: 1.01-1.74)), having more symptoms (HR for each increasing symptom: 1.06 (1.02-1.11)), using opium (HR: 1.51 (1.04-2.20)), having a tumor located in the body of pancreas (HR: 1.33 (1.02-1.75)), and having an advanced tumor stage (HR: 2.07 (1.34-3.19)) remained significantly associated with increased risk of mortality. After the adjusting for potential confounders, we did not find significant relationships between smoking, alcohol intake, and BMI with the risk of death among patients with pancreatic cancer. CONCLUSIONS Iranian patients with PC have very poor long-term survival. Besides tumor's stage and location, socioeconomic disparities could affect the probabilities of receiving treatment and/or survival in these patients. Opium use is an independent risk factor for mortality among PC patients in Iran.
Collapse
Affiliation(s)
- Mahdi Sheikh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sahar Masoudi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Bakhshandeh
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Moayyedkazemi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Nikfam
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Mansouri
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Ghamarzad Shishavan
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Nikeghbalian
- Department of Hepatobiliary Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
39
|
Beetz O, Sarisin A, Kaltenborn A, Klempnauer J, Winkler M, Grannas G. Multivisceral resection for adenocarcinoma of the pancreatic body and tail-a retrospective single-center analysis. World J Surg Oncol 2020; 18:218. [PMID: 32819373 PMCID: PMC7441692 DOI: 10.1186/s12957-020-01973-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adenocarcinoma of the pancreatic body and tail is associated with a dismal prognosis. As patients frequently present themselves with locally advanced tumors, extended surgery including multivisceral resection is often necessary in order to achieve tumor-free resection margins. The aim of this study was to identify prognostic factors for postoperative morbidity and mortality and to evaluate the influence of multivisceral resections on patient outcome. METHODS This is a retrospective analysis of 94 patients undergoing resection of adenocarcinoma located in the pancreatic body and/or tail between April 1995 and December 2016 at our institution. Uni- and multivariable Cox regression analysis was conducted to identify independent prognostic factors for postoperative survival. RESULTS Multivisceral resections, including partial resections of the liver, the large and small intestines, the stomach, the left kidney and adrenal gland, and major vessels, were carried out in 47 patients (50.0%). The median postoperative follow-up time was 12.90 (0.16-220.92) months. Median Kaplan-Meier survival after resection was 12.78 months with 1-, 3-, and 5-year survival rates of 53.2%, 15.8%, and 9.0%. Multivariable Cox regression identified coeliac trunk resection (p = 0.027), portal vein resection (p = 0.010), intraoperative blood transfusions (p = 0.005), and lymph node ratio in percentage (p = 0.001) as independent risk factors for survival. Although postoperative complications requiring surgical revision were observed more frequently after multivisceral resections (14.9 versus 2.1%; p = 0.029), postoperative survival was not significantly inferior when compared to patients undergoing standard distal or subtotal pancreatectomy (12.35 versus 13.87 months; p = 0.377). CONCLUSIONS Our data indicates that multivisceral resection in cases of locally advanced pancreatic carcinoma of the body and/or tail is justified, as it is not associated with increased mortality and can even facilitate long-term survival, albeit with an increase in postoperative morbidity. Simultaneous resections of major vessels, however, should be considered carefully, as they are associated with inferior survival.
Collapse
Affiliation(s)
- Oliver Beetz
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Akin Sarisin
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Alexander Kaltenborn
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Jürgen Klempnauer
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Michael Winkler
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Gerrit Grannas
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
40
|
Zhang TN, Yin RH, Wang LW. The prognostic and predictive value of the albumin-bilirubin score in advanced pancreatic cancer. Medicine (Baltimore) 2020; 99:e20654. [PMID: 32664063 PMCID: PMC7360257 DOI: 10.1097/md.0000000000020654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Albumin-bilirubin (ALBI) showed its prognostic and predictive value in hepatobiliary disease like hepatocellular carcinoma. However, little has been known about its role in pancreatic cancer.In this retrospective study, 149 patients with advanced pancreatic cancer (APC) treated in the Shanghai General Hospital from January 2009 to December 2014 were enrolled as the training cohort and 120 patients treated from January 2015 to December 2018 were taken as the validation cohort. We generated the ALBI score according previous studies. The correlations between ALBI and clinicopathological parameters were evaluated with the Pearson Chi-square test. Kaplan-Meier method and log-rank test were conducted to determine the correlation between ALBI and overall survival (OS). Then we used Cox regression model to investigate the prognostic significance of ALBI. We further assessed retrospectively whether ALBI score could be used to identify combination therapy candidates for APC.Eastern Cooperative Oncology Group Performance Status, hemoglobin, aspartate aminotransferase, and alanine aminotransferase were found to be significantly correlated with ALBI. Kaplan-Meier analysis showed that the median OS in patients with a pretreatment ALBI ≥-2.6 was 7.0 months, which was significantly shorter than OS of patients with a ALBI <-2.6 (13.0 months, P = .001). ALBI was independently correlated with OS in multivariate analysis. In the subgroup analysis, ALBI showed significant prognostic value in patients with liver metastasis but not those without liver metastasis in all 3 cohorts. In addition, only in the group with ALBI <-2.6, patients receiving combination therapy showed better prognosis than those receiving monotherapy.In conclusion, ALBI was a promising prognostic biomarker in APC with liver metastasis. ALBI also showed predictive value in identifying combination therapy candidates for patients with APC.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Nanjing Medical University, Nanjing
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine
| | | | - Li-Wei Wang
- Nanjing Medical University, Nanjing
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
41
|
Bakshi HA, Zoubi MSA, Faruck HL, Aljabali AAA, Rabi FA, Hafiz AA, Al-Batanyeh KM, Al-Trad B, Ansari P, Nasef MM, Charbe NB, Satija S, Mehta M, Mishra V, Gupta G, Abobaker S, Negi P, Azzouz IM, Dardouri AAK, Dureja H, Prasher P, Chellappan DK, Dua K, Silva MWD, Tanani ME, McCarron PA, Tambuwala MM. Dietary Crocin is Protective in Pancreatic Cancer while Reducing Radiation-Induced Hepatic Oxidative Damage. Nutrients 2020; 12:1901. [PMID: 32604971 PMCID: PMC7353213 DOI: 10.3390/nu12061901] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer.
Collapse
Affiliation(s)
- Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 566, Jordan;
| | - Hakkim L. Faruck
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah 211, Oman
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 566, Jordan;
| | - Firas A. Rabi
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Amin A. Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia;
| | - Khalid M Al-Batanyeh
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 566, Jordan; (K.M.A.-B.); (B.A.-T.)
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 566, Jordan; (K.M.A.-B.); (B.A.-T.)
| | - Prawej Ansari
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Mohamed M. Nasef
- Department of Pharmacy and Biomedical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD13DH, UK;
| | - Nitin B. Charbe
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins, Santiago 340, Región Metropolitana, Chile;
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.S.); (M.M.); (V.M.)
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.S.); (M.M.); (V.M.)
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; (S.S.); (M.M.); (V.M.)
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, Rajasthan 302017, India;
| | - Salem Abobaker
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow, Klinikum Charite-Universitatmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Sultanpur, Solan, Himachal Pradesh 173229, India;
| | - Ibrahim M. Azzouz
- Department of Dermatology, Venerology, and Allergology, Charite-Universitatsmedizin Berlin, Corporate Member of Freie Universitat Berlin, Chariteplatz1, 10117 Berlin, Germany;
| | - Ashref Ali K Dardouri
- Department of Forensic Science, School of Applied Sciences, University of Huddersfield, Huddersfield HD13DH, UK;
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India;
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India;
| | - Dinesh K. Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- School of Pharmaceutical Sciences, Shoolini University, Bajhol, Sultanpur, Solan, Himachal Pradesh 173229, India;
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Mohamed El Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Paul A. McCarron
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| |
Collapse
|
42
|
Chauhan SS, Shetty AB, Hatami E, Chowdhury P, Yallapu MM. Pectin-Tannic Acid Nano-Complexes Promote the Delivery and Bioactivity of Drugs in Pancreatic Cancer Cells. Pharmaceutics 2020; 12:E285. [PMID: 32235765 PMCID: PMC7151099 DOI: 10.3390/pharmaceutics12030285] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PanCa) is a lethal disease. Conventional chemotherapies for PanCa offer severe systemic toxicities. Thus, the development of a successful nanomedicine-based therapeutic regimen with augmented therapeutic efficacy is highly sought. Naturally occurring pectin and modified pectin-based drug delivery systems exhibit remarkable self-targeting ability via galactose residues to various cancer cells. Herein, we developed and used an innovative approach of highly stable nanocomplexes based on modified pectin and tannic acid (MPT-NCs). The nanocomplex formation was enabled by strong intermolecular interactions between pectin and tannic acid under very mild conditions. These nanocomplexes were characterized by particle size and morphology (DLS, TEM, and SEM), FT-IR spectroscopy, and zeta potential measurements. Additionally, MPT-NCs were capable of encapsulating anticancer drugs (5-fluorouracil, gemcitabine, and irinotecan) through tannic acid binding. The in vitro bioactivity of these drug MPT-NCs were evaluated in pancreatic cancer adenocarcinoma (PDAC) cell lines (HPAF-II and PANC-1). A dose-dependent internalization of nanocomplexes was evident from microscopy and flow cytometry analysis. Both proliferation and colony formation assays indicated the anticancer potential of pectin drug nanocomplexes against PDAC cells compared to that of free drug treatments. Together, the pectin-based nanocomplexes could be a reliable and efficient drug delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Sumeet S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Advait B Shetty
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
43
|
Moustafa EM, Rashed LA, El-Sebaie MM, Thabet NM, Abdel-Rafei MK. Crosstalk between ER-stress and apoptosis in irradiated HepG2 cells with gemcitabine: implication of PI3K/AKT and IκB/NF-κB signaling pathways. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1715569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Enas Mahmoud Moustafa
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed M. El-Sebaie
- Medical Biochemistry and Molecular Biology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noura Magdy Thabet
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
44
|
Madamsetty VS, Pal K, Dutta SK, Wang E, Thompson JR, Banerjee RK, Caulfield TR, Mody K, Yen Y, Mukhopadhyay D, Huang HS. Design and Evaluation of PEGylated Liposomal Formulation of a Novel Multikinase Inhibitor for Enhanced Chemosensitivity and Inhibition of Metastatic Pancreatic Ductal Adenocarcinoma. Bioconjug Chem 2019; 30:2703-2713. [PMID: 31584260 DOI: 10.1021/acs.bioconjchem.9b00632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the highest mortality rates among cancers. Chemotherapy is the standard first-line treatment, but only modest survival benefits are observed. With the advent of targeted therapies, epidermal growth factor receptor (EGFR) has been acknowledged as a prospective target in PDAC since it is overexpressed in up to 60% of cases. Similarly, the tyrosine-protein kinase Met (cMET) is also overexpressed in PDAC (27-60%) and is a prognostic marker for poor survival. Interestingly, EGFR and cMET share some common signaling pathways including PI3K/Akt and MAPK pathways. Small molecule inhibitors or bispecific antibodies that can target both EGFR and cMET are therefore emerging as novel options for cancer therapy. We previously developed a dual EGFR and cMET inhibitor (N19) that was able to inhibit tumor growth in nonsmall cell lung cancer models resistant to EGFR tyrosine kinase inhibitors (TKI). Here, we report the development of a novel liposomal formulation of N19 (LN19) and showed significant growth inhibition and increased sensitivity toward gemcitabine in the pancreatic adenocarcinoma orthotopic xenograft model. Taken together, our results suggest that LN19 can be valued as an effective combination therapy with conventional chemotherapy such as gemcitabine for PDAC patients.
Collapse
Affiliation(s)
| | | | | | | | - James R Thompson
- SunMoon Research Partners Limited Liability Company , Jacksonville , Florida 32224 , United States
| | - Raj Kumar Banerjee
- Department of Applied Biology , CSIR-Indian Institute of Chemical Technology , Hyderabad , Telangana 500 007 , India
- CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus , Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad , Uttar Pradesh 201 002 , India
| | | | | | | | | | | |
Collapse
|
45
|
Wei L, Wen JY, Chen J, Ma XK, Wu DH, Chen ZH, Huang JL. Oncogenic ADAM28 induces gemcitabine resistance and predicts a poor prognosis in pancreatic cancer. World J Gastroenterol 2019; 25:5590-5603. [PMID: 31602160 PMCID: PMC6785518 DOI: 10.3748/wjg.v25.i37.5590] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a major cause of cancer-related death, with a 5-year overall survival rate being below 5%. The main causes of poor prognosis in pancreatic cancer include easy metastasis, high recurrence rate, and robust drug resistance. Gemcitabine is a first-line drug for patients with unresectable pancreatic cancer. However, due to drug resistance, the clinical effect is not satisfactory. ADAM28 is reported as a tumor promoter in some cancers, but its role in pancreatic cancer and gemcitabine chemoresistance in pancreatic cancer has not been elucidated.
AIM To identify if ADAM28 can act as an important target to reverse the gemcitabine drug resistance in pancreatic cancer.
METHODS RNA-sequence analysis was applied to explore the potential targets involved in the gemcitabine of pancreatic cancer. SW1990 pancreatic cancer cells were treated with an increased dose of gemcitabine, and the mRNA levels of ADAM28 were evaluated by RT-PCR. The protein and mRNA levels of ADAM28 were confirmed in the gemcitabine resistant and parallel SW1990 cells. The ADAM28 expression was also assessed in TCGA and GEO databases, and the results were confirmed in the collected tumor and adjacent normal tissues. The overall survival (OS) rate and relapse-free survival (RFS) rate of pancreatic cancer patients with high ADAM28 level and low ADAM28 level in TCGA were evaluated with Kaplan-Meier Plotter. Furthermore, the OS rate was calculated in pancreatic cancer patients with high tumor mutation burden (TMB) and low TMB. CCK-8 assay was used to examine the effect of ADAM28 on the viability of SW1990 cells. The ADAM28 and its co-expressed genes were analyzed in the cBioPortal for cancer genomics and subjected to GSEA pathway analysis. The correlations of ADAM28 with GSTP1, ABCC1, GSTM4, and BCL2 were analyzed based on TCGA data on pancreatic cancer.
RESULTS RNA-sequence analysis identified that ADAM28 was overexpressed in gemcitabine-resistant cells, and gemcitabine treatment could induce the expression of ADAM28. The mRNA and protein levels of ADAM28 were elevated in gemcitabine-resistant SW1990 cells compared with parallel cells. Also, the expression of ADAM28 was upregulated in pancreatic tumor tissues against normal pancreatic tissues. Notably, ADAM28 was highly expressed in the classical type than in the basal tumor type. Furthermore, the high expression of ADAM28 was associated with low OS and RFS rates. Interestingly, the high levels of ADAM28 was associated with a significantly lower OS rate in the high TMB patients, but not in the low TMB patients. Moreover, overexpression of ADAM28 could reduce the cell viability inhibition by gemcitabine, and knockdown of ADAM28 could enhance the proliferation inhibition by gemcitabine. The GSEA analysis showed that ADAM28 was related to the regulation of drug metabolism, and ADAM28 was significantly positively correlated with GSTP1, ABCC1, GSTM4, and BCL2.
CONCLUSION This study demonstrates that ADAM28 is overexpressed in pancreatic cancer, and closely involved in the regulation of gemcitabine resistance. Overexpression of ADAM28 is a novel prognostic biomarker in pancreatic cancer.
Collapse
Affiliation(s)
- Li Wei
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Jing-Yun Wen
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Jie Chen
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Xiao-Kun Ma
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Dong-Hao Wu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Zhan-Hong Chen
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Jiang-Long Huang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
46
|
Hays E, Bonavida B. Nitric Oxide-Mediated Enhancement and Reversal of Resistance of Anticancer Therapies. Antioxidants (Basel) 2019; 8:E407. [PMID: 31533363 PMCID: PMC6769868 DOI: 10.3390/antiox8090407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
In the last decade, immune therapies against human cancers have emerged as a very effective therapeutic strategy in the treatment of various cancers, some of which are resistant to current therapies. Although the clinical responses achieved with many therapeutic strategies were significant in a subset of patients, another subset remained unresponsive initially, or became resistant to further therapies. Hence, there is a need to develop novel approaches to treat those unresponsive patients. Several investigations have been reported to explain the underlying mechanisms of immune resistance, including the anti-proliferative and anti-apoptotic pathways and, in addition, the increased expression of the transcription factor Yin-Yang 1 (YY1) and the programmed death ligand 1 (PD-L1). We have reported that YY1 leads to immune resistance through increasing HIF-1α accumulation and PD-L1 expression. These mechanisms inhibit the ability of the cytotoxic T-lymphocytes to mediate their cytotoxic functions via the inhibitory signal delivered by the PD-L1 on tumor cells to the PD-1 receptor on cytotoxic T-cells. Thus, means to override these resistance mechanisms are needed to sensitize the tumor cells to both cell killing and inhibition of tumor progression. Treatment with nitric oxide (NO) donors has been shown to sensitize many types of tumors to chemotherapy, immunotherapy, and radiotherapy. Treatment of cancer cell lines with NO donors has resulted in the inhibition of cancer cell activities via, in part, the inhibition of YY1 and PD-L1. The NO-mediated inhibition of YY1 was the result of both the inhibition of the upstream NF-κB pathway as well as the S-nitrosylation of YY1, leading to both the downregulation of YY1 expression as well as the inhibition of YY1-DNA binding activity, respectively. Also, treatment with NO donors induced the inhibition of YY1 and resulted in the inhibition of PD-L1 expression. Based on the above findings, we propose that treatment of tumor cells with the combination of NO donors, at optimal noncytotoxic doses, and anti-tumor cytotoxic effector cells or other conventional therapies will result in a synergistic anticancer activity and tumor regression.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA.
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Cadete A, Olivera A, Besev M, Dhal PK, Gonçalves L, Almeida AJ, Bastiat G, Benoit JP, de la Fuente M, Garcia-Fuentes M, Alonso MJ, Torres D. Self-assembled hyaluronan nanocapsules for the intracellular delivery of anticancer drugs. Sci Rep 2019; 9:11565. [PMID: 31399627 PMCID: PMC6689112 DOI: 10.1038/s41598-019-47995-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Preparation of sophisticated delivery systems for nanomedicine applications generally involve multi-step procedures using organic solvents. In this study, we have developed a simple self-assembling process to prepare docetaxel-loaded hyaluronic acid (HA) nanocapsules by using a self-emulsification process without the need of organic solvents, heat or high shear forces. These nanocapsules, which comprise an oily core and a shell consisting of an assembly of surfactants and hydrophobically modified HA, have a mean size of 130 nm, a zeta potential of -20 mV, and exhibit high docetaxel encapsulation efficiency. The nanocapsules exhibited an adequate stability in plasma. Furthermore, in vitro studies performed using A549 lung cancer cells, showed effective intracellular delivery of docetaxel. On the other hand, blank nanocapsules showed very low cytotoxicity. Overall, these results highlight the potential of self-emulsifying HA nanocapsules for intracellular drug delivery.
Collapse
Affiliation(s)
- Ana Cadete
- Nanobiofar Group, IDIS, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Olivera
- Nanobiofar Group, IDIS, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Guillaume Bastiat
- Micro et Nanomedecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, 4 rue Larrey, Angers, France
| | - Jean-Pierre Benoit
- Micro et Nanomedecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, 4 rue Larrey, Angers, France
| | - María de la Fuente
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), Madrid, Spain
| | - Marcos Garcia-Fuentes
- Nanobiofar Group, IDIS, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Alonso
- Nanobiofar Group, IDIS, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Dolores Torres
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
48
|
Mollinedo F, Gajate C. Novel therapeutic approaches for pancreatic cancer by combined targeting of RAF→MEK→ERK signaling and autophagy survival response. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S153. [PMID: 31576360 PMCID: PMC6685885 DOI: 10.21037/atm.2019.06.40] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Faustino Mollinedo
- Department of Molecular Biomedicine, Laboratory of Cell Death and Cancer Therapy, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Consuelo Gajate
- Department of Molecular Biomedicine, Laboratory of Cell Death and Cancer Therapy, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
49
|
Hou YC, Chao YJ, Hsieh MH, Tung HL, Wang HC, Shan YS. Low CD8⁺ T Cell Infiltration and High PD-L1 Expression Are Associated with Level of CD44⁺/CD133⁺ Cancer Stem Cells and Predict an Unfavorable Prognosis in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11040541. [PMID: 30991694 PMCID: PMC6520688 DOI: 10.3390/cancers11040541] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy targeting immune checkpoints has exhibited promising clinical outcomes in many cancers, but it offers only limited benefits for pancreatic cancer (PC). Cancer stem cells (CSCs), a minor subpopulation of cancer cells, play important roles in tumor initiation, progression, and drug resistance. Accumulating evidence suggests that CSCs employ immunosuppressive effects to evade immune system recognition. However, the clinical implications of the associations among CD8⁺ T cells infiltration, programmed death receptor ligand-1 (PD-L1) expression, and CSCs existence are poorly understood in PC. Immunostaining and quantitative analysis were performed to assess CD8⁺ T cells infiltration, PD-L1 expression, and their relationship with CD44⁺/CD133⁺ CSCs and disease progression in PC. CD8⁺ T cells infiltration was associated with better survival while PD-L1 expression was correlated with PC recurrence. Both the low CD8⁺ T cells infiltration/high PD-L1 expression group and the high CD8⁺ T cells infiltration/high PD-L1 expression group show high levels of CD44⁺/CD133⁺ CSCs, but patients with low CD8⁺ T cells infiltration/high PD-L1 expression had worse survival and higher recurrence risk than those with high CD8⁺ T cells infiltration/high PD-L1 expression. Moreover, high infiltration of CD8⁺ T cells could reduce unfavorable prognostic effect of high co-expression of PD-L1 and CD44/CD133. Our study highlights an interaction among CD8⁺ T cells infiltration, PD-L1 expression, and CD44⁺/CD133⁺ CSCs existence, which contributes to PC progression and immune evasion.
Collapse
Affiliation(s)
- Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Ying-Jui Chao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Min-Hua Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hui-Ling Tung
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Department of Clinical Medical Research, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|