1
|
Abdou M, Ramadan A, El-Agamy BE, EL-Farsy MS, Saleh EM. Mutational analysis of phospholipase C epsilon 1 gene in Egyptian children with steroid-resistant nephrotic syndrome. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Steroid-resistant nephrotic syndrome (SRNS) is characterized by unresponsiveness of nephrotic range proteinuria to standard steroid therapy, and is the main cause of childhood renal failure. The identification of more than 53 monogenic causes of SRNS has led researchers to focus on the genetic mutations related to the molecular mechanisms of the disease. Mutations in the PLCE1 gene, which encodes phospholipase C epsilon 1 (PLCε1), have been described in patients with early-onset SRNS characterized by progressive renal failure. In this study we screened for PLCE1 mutations in Egyptian children with SRNS. This is a descriptive case series study aiming to screen for PLCE1 gene mutations by direct sequencing of five exons—9, 12, 15, 19, 27—in 20 Egyptian children with SRNS who entered the Nephrology Unit, Faculty of Medicine, Ain-Shams University from November 2015 to December 2017. The variants detected were submitted to in silico analysis.
Results
We screened for mutations in five selected exons of PLCE1 gene. We identified seven variants in the five selected exons with homozygous and heterozygous inheritance pattern, two are intronic variants, two are silent variants, and three are missense variants. We identified four novel variants two are silent with no clinical significance and two are missense with uncertain clinical significance and pathogenic in-silico predictions; one p.Arg1230His in exon 12, the other is p.Glu1393Lys in exon 15.
Conclusions
We identified four novel mutations, findings which added to the registered SNP spectrum of the PLCE1 gene. These results widen the spectrum of PLCE1 gene mutations and support the importance of genetic testing in different populations of SRNS patients, therefore, to assess the vulnerability of Egyptian children to SRNS candidate genes, further studies needed on a larger number of cases which undoubtedly provide new insights into the pathogenic mechanisms of SRNS and might help in control of the patient. Additionally, the use of computational scoring and modeling tools may assist in the evaluation of the way in which the SNPs affect protein functionality.
Collapse
|
2
|
Yamada H, Shirata N, Makino S, Miyake T, Trejo JAO, Yamamoto-Nonaka K, Kikyo M, Empitu MA, Kadariswantiningsih IN, Kimura M, Ichimura K, Yokoi H, Mukoyama M, Hotta A, Nishimori K, Yanagita M, Asanuma K. MAGI-2 orchestrates the localization of backbone proteins in the slit diaphragm of podocytes. Kidney Int 2020; 99:382-395. [PMID: 33144214 DOI: 10.1016/j.kint.2020.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/22/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Abstract
Podocytes are highly specialized cells within the glomerulus that are essential for ultrafiltration. The slit diaphragm between the foot processes of podocytes functions as a final filtration barrier to prevent serum protein leakage into urine. The slit-diaphragm consists mainly of Nephrin and Neph1, and localization of these backbone proteins is essential to maintaining the integrity of the glomerular filtration barrier. However, the mechanisms that regulate the localization of these backbone proteins have remained elusive. Here, we focused on the role of membrane-associated guanylate kinase inverted 2 (MAGI-2) in order to investigate mechanisms that orchestrate localization of slit-diaphragm backbone proteins. MAGI-2 downregulation coincided with a reduced expression of slit-diaphragm backbone proteins in human kidneys glomerular disease such as focal segmental glomerulosclerosis or IgA nephropathy. Podocyte-specific deficiency of MAGI-2 in mice abrogated localization of Nephrin and Neph1 independently of other scaffold proteins. Although a deficiency of zonula occuldens-1 downregulated the endogenous Neph1 expression, MAGI-2 recovered Neph1 expression at the cellular edge in cultured podocytes. Additionally, overexpression of MAGI-2 preserved Nephrin localization to intercellular junctions. Co-immunoprecipitation and pull-down assays also revealed the importance of the PDZ domains of MAGI-2 for the interaction between MAGI-2 and slit diaphragm backbone proteins in podocytes. Thus, localization and stabilization of Nephrin and Neph1 in intercellular junctions is regulated mainly via the PDZ domains of MAGI-2 together with other slit-diaphragm scaffold proteins. Hence, these findings may elucidate a mechanism by which the backbone proteins are maintained.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naritoshi Shirata
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Shinichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Miyake
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kanae Yamamoto-Nonaka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Kikyo
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Saitama, Japan
| | - Maulana A Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Maiko Kimura
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Akitsu Hotta
- Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan; Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|