1
|
Vranic M, Ahmed F, Hetty S, Sarsenbayeva A, Ferreira V, Fanni G, Valverde ÁM, Eriksson JW, Pereira MJ. Effects of the second-generation antipsychotic drugs aripiprazole and olanzapine on human adipocyte differentiation. Mol Cell Endocrinol 2023; 561:111828. [PMID: 36526026 DOI: 10.1016/j.mce.2022.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Second-generation antipsychotics (SGAs), used as the cornerstone treatment for schizophrenia and other mental disorders, can cause adverse metabolic effects (e.g. obesity and type 2 diabetes). We investigated the effects of SGAs on adipocyte differentiation and metabolism. The presence of therapeutic concentrations of aripiprazole (ARI) or its active metabolite dehydroaripiprazole (DARI) during human adipocyte differentiation impaired adipocyte glucose uptake while the expression of gene markers of fatty acid oxidation were increased. Additionally, the use of a supra-therapeutic concentration of ARI inhibited adipocyte differentiation. Furthermore, olanzapine (OLA), a highly obesogenic SGA, directly increased leptin gene expression but did not affect adipocyte differentiation and metabolism. These molecular insights are novel, and suggest that ARI, but not OLA, may directly act via alterations in adipocyte differentiation and potentially by causing a switch from glucose to lipid utilization in human adipocytes. Additionally, SGAs may effect crosstalk with other organs, such as the brain, to exert their adverse metabolic effects.
Collapse
Affiliation(s)
- Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Vitor Ferreira
- IIBm Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Ángela M Valverde
- IIBm Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Spain
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden.
| |
Collapse
|
2
|
Effect on Body Weight and Adipose Tissue by Cariprazine: A Head-to-Head Comparison Study to Olanzapine and Aripiprazole in Rats. Sci Pharm 2020. [DOI: 10.3390/scipharm88040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cariprazine (Car) is a recently approved second generation antipsychotic (SGA) with unique pharmacodynamic profile, being a partial agonist at both dopamine D2/3 receptor subtypes, with almost 10 times greater affinity towards D3. SGAs are known to increase body weight, alter serum lipids, and stimulate adipogenesis but so far, limited information about the adverse effects is available with this drug. In order to study this new SGA with such a unique mechanism of action, we compared Car to substances that are considered references and are well characterized: olanzapine (Ola) and aripiprazole (Ari). We studied the effects on body weight and also assessed the adipogenesis in rats. The drugs were self-administered in two different doses to female, adult, Wistar rats for six weeks. Weekly body weight change, vacuole size of adipocytes, Sterol Regulatory Element Binding Protein-1 (SREBP-1) and Uncoupling Protein-1 (UCP-1) expression were measured from the visceral adipose tissue (AT). The adipocyte’s vacuole size, and UCP-1 expression were increased while body weight gain was diminished by Car. by increasing UCP-1 might stimulate the thermogenesis, that could potentially explain the weight gain lowering effect through enhanced lipolysis.
Collapse
|
3
|
Carpéné C, Les F, Mercader J, Gomez-Zorita S, Grolleau JL, Boulet N, Fontaine J, Iglesias-Osma MC, Garcia-Barrado MJ. Opipramol Inhibits Lipolysis in Human Adipocytes without Altering Glucose Uptake and Differently from Antipsychotic and Antidepressant Drugs with Adverse Effects on Body Weight Control. Pharmaceuticals (Basel) 2020; 13:ph13030041. [PMID: 32151075 PMCID: PMC7151722 DOI: 10.3390/ph13030041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Treatment with several antipsychotic drugs exhibits a tendency to induce weight gain and diabetic complications. The proposed mechanisms by which the atypical antipsychotic drug olanzapine increases body weight include central dysregulations leading to hyperphagia and direct peripheral impairment of fat cell lipolysis. Several investigations have reproduced in vitro direct actions of antipsychotics on rodent adipocytes, cultured preadipocytes, or human adipose tissue-derived stem cells. However, to our knowledge, no such direct action has been described in human mature adipocytes. The aim of the present study was to compare in human adipocytes the putative direct alterations of lipolysis by antipsychotics (haloperidol, olanzapine, ziprazidone, risperidone), antidepressants (pargyline, phenelzine), or anxiolytics (opipramol). Lipolytic responses to the tested drugs, and to recognized lipolytic (e.g., isoprenaline) or antilipolytic agents (e.g., insulin) were determined, together with glucose transport and amine oxidase activities in abdominal subcutaneous adipocytes from individuals undergoing plastic surgery. None of the tested drugs were lipolytic. Surprisingly, only opipramol exhibited substantial antilipolytic properties in the micromolar to millimolar range. An opipramol antilipolytic effect was evident against isoprenaline-, forskolin-, or atrial natriuretic peptide-stimulated lipolysis. Opipramol did not impair insulin activation of glucose transport but inhibited monoamine oxidase (MAO) activity to the same extent as antidepressants recognized as MAO inhibitors (pargyline, harmine, or phenelzine), whereas antipsychotics were inefficient. Considering its unique properties, opipramol, which is not associated with weight gain in treated patients, is a good candidate for drug repurposing because it limits exaggerated lipolysis, prevents hydrogen peroxide release by amine oxidases in adipocytes, and is thereby of potential use to limit lipotoxicity and oxidative stress, two deleterious complications of diabetes and obesity.
Collapse
Affiliation(s)
- Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France; (N.B.); (J.F.)
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, France
- Correspondence:
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Josep Mercader
- Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, 07122 Palma, Spain;
- Balearic Islands Health Research Institute (IdISBa), 07120 Palma, Spain
| | - Saioa Gomez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 48940 Vitoria, Spain;
| | | | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France; (N.B.); (J.F.)
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, France
| | - Jessica Fontaine
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France; (N.B.); (J.F.)
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, France
| | - Mari Carmen Iglesias-Osma
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, 37007 Salamanca, Spain; (M.C.I.-O.); (M.J.G.-B.)
- Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Maria José Garcia-Barrado
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, 37007 Salamanca, Spain; (M.C.I.-O.); (M.J.G.-B.)
- Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Chen CYA, Goh KK, Chen CH, Lu ML. The Role of Adiponectin in the Pathogenesis of Metabolic Disturbances in Patients With Schizophrenia. Front Psychiatry 2020; 11:605124. [PMID: 33551872 PMCID: PMC7854923 DOI: 10.3389/fpsyt.2020.605124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Antipsychotic-induced metabolic disturbance is a common adverse event occurring in patients treated with antipsychotic drugs. The mechanisms underlying metabolic dysregulation are complex, involving various neurochemical and hormonal systems, the interaction of genetic and lifestyle risk factors, and the antipsychotic drug prescribed. Recently, there has been increasing interest in the relationship between antipsychotic-induced metabolic disturbances and body weight regulatory hormones such as adiponectin. Adiponectin, an adipocyte-derived protein related to insulin sensitivity, weight gain, and anti-inflammation, has attracted great attention because of its potential role of being a biomarker to predict cardiovascular and metabolic diseases. Previous studies regarding the effects of antipsychotics on blood adiponectin levels have shown controversial results. Several factors might contribute to those inconsistent results, including different antipsychotic drugs, duration of antipsychotic exposure, age, sex, and ethnicity. Here we summarize the existing evidence on the link between blood adiponectin levels and metabolic disturbances related to antipsychotic drugs in patients with schizophrenia. We further discuss the effects of individual antipsychotics, patients' gender, ethnicity, age, and treatment duration on those relationships. We propose that olanzapine and clozapine might have a time-dependent biphasic effect on blood adiponectin levels in patients with schizophrenia.
Collapse
Affiliation(s)
- Cynthia Yi-An Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kah Kheng Goh
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Combination of Olanzapine Pamoate with Melatonin and Metformin: Quantitative Changes in Rat Adipose Tissue. CURRENT HEALTH SCIENCES JOURNAL 2019; 45:372-382. [PMID: 32110439 PMCID: PMC7014984 DOI: 10.12865/chsj.45.04.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Olanzapine is one of the atypical antipsychotics widely used in the treatment of schizophrenia and has been associated with metabolic changes as adverse effects, including hyperglycemia, dyslipidemia, and weight gain. In a batch of adult female Wistar rats, we studied the prolonged-release intramuscular olanzapine pamoate induced quantitative changes of visceral and subcutaneous adipose tissue. We also assessed the effects of the combinations of olanzapine pamoate with melatonin, metformin, and melatonin plus metformin, administered by gastric gavage. A higher mean weight of the visceral and subcutaneous adipose tissue per animal was noted in the olanzapine pamoate exposed group compared to controls. The association with melatonin, metformin, or the combination of melatonin with metformin attenuated the olanzapine-induced adipose deposit tissue growth. The effect was more pronounced for the combination of olanzapine with melatonin and metformin. Because most of the results were not statistically significant we can deduce that in the chronic experiment, adaptive type modifications of the receptors on which both olanzapine and melatonin act can occur.
Collapse
|