1
|
Yousefi P, Tabibzadeh A, Jawaziri AK, Mehrjoo M, Akhavan M, Allahqoli L, Salehiniya H. Autophagy-related genes polymorphism in hepatitis B virus-associated hepatocellular carcinoma: A systematic review. Immun Inflamm Dis 2024; 12:e1182. [PMID: 38353395 PMCID: PMC10865419 DOI: 10.1002/iid3.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) virus is the most common risk factor for developing liver malignancy. Autophagy is an essential element in human cell maintenance. Several studies have demonstrated that autophagy plays a vital role in liver cancer at different stages. In this systematic review, we intend to investigate the role of polymorphism and mutations of autophagy-related genes (ATGs) in the pathogenesis and carcinogenesis of the hepatitis B virus (HBV). MATERIALS AND METHODS The search was conducted in online databases (Web of Science, PubMed, and Scopus) using Viruses, Infections, Polymorphism, Autophagy, and ATG. The study was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. RESULTS The primary search results led to 422 studies. By screening and eligibility evaluation, only four studies were relevant. The most important polymorphisms in hepatocellular carcinoma were rs2241880 in ATG16L1, rs77859116, rs510432, and rs548234 in ATG5. Furthermore, some polymorphisms are associated with an increased risk of HBV infection including, rs2241880 in ATG16L1 and rs6568431 in ATG5. CONCLUSION The current study highlights the importance of rs2241880 in ATG16L1 and rs77859116, rs510432, and rs548234 in ATG5 for HBV-induced HCC. Additionally, some mutations in ATG16L1 and ATG5 were important in risk of HBV infection. The study highlights the gap of knowledge in the field of ATG polymorphisms in HBV infection and HBV-induced HCC.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Alireza Tabibzadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | | | - Mohsen Mehrjoo
- Department of Biochemistry and Genetics, School of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Mandana Akhavan
- Department of Microbiology, Faculty of Medical SciencesIslamic Azad University, Arak BranchArakIran
| | - Leila Allahqoli
- Department of MidwiferyMinistry of Health and Medical EducationTehranIran
| | - Hamid Salehiniya
- Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
2
|
Wang X, Cao X, Feng Y, Guo M, Yu G, Wang J. ELSSI: parallel SNP-SNP interactions detection by ensemble multi-type detectors. Brief Bioinform 2022; 23:6607749. [PMID: 35696639 DOI: 10.1093/bib/bbac213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 05/07/2022] [Indexed: 12/11/2022] Open
Abstract
With the development of high-throughput genotyping technology, single nucleotide polymorphism (SNP)-SNP interactions (SSIs) detection has become an essential way for understanding disease susceptibility. Various methods have been proposed to detect SSIs. However, given the disease complexity and bias of individual SSI detectors, these single-detector-based methods are generally unscalable for real genome-wide data and with unfavorable results. We propose a novel ensemble learning-based approach (ELSSI) that can significantly reduce the bias of individual detectors and their computational load. ELSSI randomly divides SNPs into different subsets and evaluates them by multi-type detectors in parallel. Particularly, ELSSI introduces a four-stage pipeline (generate, score, switch and filter) to iteratively generate new SNP combination subsets from SNP subsets, score the combination subset by individual detectors, switch high-score combinations to other detectors for re-scoring, then filter out combinations with low scores. This pipeline makes ELSSI able to detect high-order SSIs from large genome-wide datasets. Experimental results on various simulated and real genome-wide datasets show the superior efficacy of ELSSI to state-of-the-art methods in detecting SSIs, especially for high-order ones. ELSSI is applicable with moderate PCs on the Internet and flexible to assemble new detectors. The code of ELSSI is available at https://www.sdu-idea.cn/codes.php?name=ELSSI.
Collapse
Affiliation(s)
- Xin Wang
- School of Software, Shandong University, Jinan 250101, China.,Joint SDU-NTU Centre for Artificial Intelligence Research(C-FAIR), Shandong University, Jinan 250101, China
| | - Xia Cao
- College of Computer and Information Sciences, Southwest University, Chongqing 400715, China
| | - Yuantao Feng
- College of Computer and Information Sciences, Southwest University, Chongqing 400715, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Guoxian Yu
- School of Software, Shandong University, Jinan 250101, China
| | - Jun Wang
- Joint SDU-NTU Centre for Artificial Intelligence Research(C-FAIR), Shandong University, Jinan 250101, China
| |
Collapse
|
3
|
Mommersteeg M, Simovic I, Yu B, van Nieuwenburg S, Bruno IM, Doukas M, Kuipers E, Spaander M, Peppelenbosch M, Castaño-Rodríguez N, Fuhler G. Autophagy mediates ER stress and inflammation in Helicobacter pylori-related gastric cancer. Gut Microbes 2022; 14:2015238. [PMID: 34965181 PMCID: PMC8726742 DOI: 10.1080/19490976.2021.2015238] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Autophagy is a cellular degradation mechanism, which is triggered by the bacterium Helicobacter pylori. A single nucleotide polymorphism (SNP) in the autophagy gene ATG16L1 (rs2241880, G-allele) has been shown to dysregulate autophagy and increase intestinal endoplasmic reticulum (ER) stress. Here, we investigate the role of this SNP in H.pylori-mediated gastric carcinogenesis and its molecular pathways. ATG16L1 rs2241880 was genotyped in subjects from different ethnic cohorts (Dutch and Australian) presenting with gastric (pre)malignant lesions of various severity. Expression of GRP78 (a marker for ER stress) was assessed in gastric tissues. The effect of ATG16L1 rs2241880 on H.pylori-mediated ER stress and pro-inflammatory cytokine induction was investigated in organoids and CRISPR/Cas9 modified cell lines. Development of gastric cancer was associated with the ATG16L1 rs2241880 G-allele. Intestinal metaplastic cells in gastric tissue of patients showed increased levels of ER-stress. In vitro models showed that H.pylori increases autophagy while reducing ER stress, which appeared partly mediated by the ATG16L1 rs2241880 genotype. H.pylori-induced IL-8 production was increased while TNF-α production was decreased, in cells homozygous for the G-allele. The ATG16L1 rs2241880 G-allele is associated with progression of gastric premalignant lesions and cancer. Modulation of H.pylori-induced ER stress pathways and pro-inflammatory mediators by ATG16L1 rs2441880 may underlie this increased risk.
Collapse
Affiliation(s)
- M.C. Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I. Simovic
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia
| | - B. Yu
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S.A.V. van Nieuwenburg
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - I, M.J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - E.J. Kuipers
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.C.W. Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M.P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - N. Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, Unsw, Sydney, Australia,CONTACT N. Castaño-Rodríguez School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW 2052, Australia
| | - G.M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands,G.M. Fuhler PhD Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Unsw, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Belyaeva E, Kharwar RK, Ulasov IV, Karlina I, Timashev P, Mohammadinejad R, Acharya A. Isoforms of autophagy-related proteins: role in glioma progression and therapy resistance. Mol Cell Biochem 2022; 477:593-604. [PMID: 34854022 DOI: 10.1007/s11010-021-04308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
Autophagy is the process of recycling and utilization of degraded organelles and macromolecules in the cell compartments formed during the fusion of autophagosomes with lysosomes. During autophagy induction the healthy and tumor cells adapt themselves to harsh conditions such as cellular stress or insufficient supply of nutrients in the cell environment to maintain their homeostasis. Autophagy is currently seen as a form of programmed cell death along with apoptosis and necroptosis. In recent years multiple studies have considered the autophagy as a potential mechanism of anticancer therapy in malignant glioma. Although, subsequent steps in autophagy development are known and well-described, on molecular level the mechanism of autophagosome initiation and maturation using autophagy-related proteins is under investigation. This article reviews current state about the mechanism of autophagy, its molecular pathways and the most recent studies on roles of autophagy-related proteins and their isoforms in glioma progression and its treatment.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Rajesh Kumar Kharwar
- Endocrine Research Laboratory, Department of Zoology, Kutir Post Graduate College, Chakkey, Jaunpur, UP, India
| | - Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991.
| | - Irina Karlina
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Petr Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation, 119991
- Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin st., Moscow, Russian Federation, 119991
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russian Federation, 119991
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arbind Acharya
- Tumor Immunology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
5
|
Zhang G, Jin M. Genetic associations between CYP24A1 polymorphisms and predisposition of cancer: A meta-analysis. Int J Biol Markers 2020; 35:71-79. [PMID: 33050822 DOI: 10.1177/1724600820944408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND CYP24A1 polymorphisms may affect predisposition of cancer, but the results of published studies remain inconclusive. Therefore, the authors conducted this meta-analysis to more robustly assess relationships between CYP24A1 polymorphisms and the predisposition of cancer by pooling the findings of published studies. MATERIALS AND METHODS A comprehensive literature search of PubMed, Embase, Web of Science, Wanfang, and CNKI was endorsed by the authors to identify eligible studies; 17 studies were finally found to be eligible for pooled meta-analysis. RESULTS The pooled meta-analysis results showed that genotypic frequencies of the rs4809960 polymorphism among cancerous patients and controls of Caucasian ethnicity differed significantly, and genotypic frequencies of the rs6022999 polymorphism among cancerous patients and controls of Asian ethnicity also differed significantly. Moreover, we found that genotypic frequencies of the rs2585428 polymorphism among patients with prostate cancer and controls differed significantly, and genotypic frequencies of the rs6068816 polymorphism among patients with prostate cancer/breast cancer and controls also differed significantly. CONCLUSIONS This meta-analysis suggests that the rs4809960 polymorphism may affect the predisposition of cancer in Caucasians, and the rs6022999 polymorphism may affect the predisposition of cancer in Asians. Moreover, the rs2585428 polymorphism may affect the predisposition of prostate cancer, while the rs6068816 polymorphism may affect the predisposition of prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Colorectal and Anal Surgery, Shengzhou People's Hospital, Shengzhou, Zhejiang, China
| | - Maohe Jin
- Department of Colorectal and Anal Surgery, Shengzhou People's Hospital, Shengzhou, Zhejiang, China
| |
Collapse
|
6
|
Cai H, Xu W, Zhang X. LncRNA growth arrest-special 5 polymorphisms and predisposition to cancer: A meta-analysis. Int J Biol Markers 2020; 35:28-34. [PMID: 32996361 DOI: 10.1177/1724600820915483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM The lncRNA growth arrest-special 5 (GAS5) is a critical tumor suppressor lncRNA, and its expression level has been found to be decreased in many types of cancers. So GAS5 polymorphisms are also likely to influence predisposition to many types of malignant diseases. Nevertheless, the relationships between GAS5 polymorphisms and cancer are still controversial. Thus, the authors designed this meta-analysis to get a more statistically reliable conclusion. METHODS The authors searched PubMed, Embase, and Web of Science for eligible studies. A total of 12 eligible studies involving 8693 cancer cases and 10,805 controls were pooled and analyzed in this meta-analysis. RESULTS Among GAS5 polymorphisms, only GAS5 rs145204276 insertion/deletion polymorphism could be analyzed in a meta-analysis with regard to predisposition to cancer since no any other GAS5 polymorphisms were explored by at least two individual genetic association studies. All eligible studies were found to be of Asian origin. Although the overall pooled meta-analysis results did not show any significant associations between rs145204276 insertion/deletion polymorphism and a predisposition to cancer, rs145204276 insertion/deletion polymorphism was demonstrated to be significantly associated with a predisposition to gastric cancer (dominant comparison: P<0.0001; recessive comparison: P=0.005; over-dominant comparison: P=0.0003; over-dominant comparison: P<0.0001) in Asians in further subgroup analyses. CONCLUSIONS This meta-analysis demonstrated that GAS5 rs145204276 insertion/deletion polymorphism was associated with a predisposition to gastric cancer in Asians. Nevertheless, considering that this positive finding was only based on three eligible studies from the same area, future studies with larger sample sizes in other populations are still warranted to test the robustness of our findings.
Collapse
Affiliation(s)
- Hairong Cai
- Department of Urology Surgery, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Wenyan Xu
- Medical College, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Zhang
- Department of Urology Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|