1
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
2
|
Abu-Khudir R, Badr GM, Abd El-Moaty HI, Hamad RS, Al Abdulsalam NK, Abdelrahem ASA, Alqarni S, Alkuwayti MA, Salam SA, Abd El-Kareem HF. Garden Cress Seed Oil Abrogates Testicular Oxidative Injury and NF-kB-Mediated Inflammation in Diabetic Mice. Int J Mol Sci 2023; 24:15478. [PMID: 37895159 PMCID: PMC10607464 DOI: 10.3390/ijms242015478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder associated with various complications encompassing male reproductive dysfunction. The present study aimed to investigate the therapeutic potential of biologically active Lepidium sativum seed oil (LSO) against the testicular dysfunction associated with streptozotocin (STZ)-induced diabetes. Male adults (n = 24) were divided into four groups: control, LSO-administered, diabetic (D), and LSO-treated diabetic (D+LSO) groups. LSO was extracted from L. sativum seeds, and its chemical composition was determined using GC-MS. Serum testosterone levels, testicular enzymatic antioxidants (catalase (CAT) and superoxide dismutase (SOD)), an oxidative stress (OS) biomarker, malondialdehyde (MDA), pro-inflammatory markers (NF-kB, IL-1, IL-6, and TNF-α), and the expression level of NF-kB were assessed. In addition, histopathological changes were evaluated in testicular tissues. The results obtained showed that the chemical composition of LSO indicated its enrichment mainly with γ-tocopherol (62.1%), followed by 2-methylhexacosane (8.12%), butylated hydroxytoluene (8.04%), 10-Methylnonadecane (4.81%), and δ-tocopherol (3.91%). Moreover, LSO administration in the D+LSO mice significantly increased testosterone levels and ameliorated the observed testicular oxidative damage, inflammatory response, and reduced NF-kB expression compared to the diabetic mice. Biochemical and molecular analyses confirmed the histological results. In conclusion, LSO may prevent the progression of diabetes-induced impairment in the testes through inhibition of the OS- and NF-kB-mediated inflammatory response.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Biochemistry Division, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan M. Badr
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (G.M.B.); (H.F.A.E.-K.)
| | - Heba Ibrahim Abd El-Moaty
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.I.A.E.-M.); (R.S.H.); (N.K.A.A.); (M.A.A.)
- Medicinal and Aromatic Plants Department, Desert Research Center El-Mataria, Cairo 11753, Egypt
| | - Rabab S. Hamad
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.I.A.E.-M.); (R.S.H.); (N.K.A.A.); (M.A.A.)
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Najla K. Al Abdulsalam
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.I.A.E.-M.); (R.S.H.); (N.K.A.A.); (M.A.A.)
| | - Aml Sayed Ali Abdelrahem
- Department of Nursing, College of Applied Medical Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia;
| | - Saleha Alqarni
- Department of Clinical Nutrition, College of Applied Medical Science King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia;
| | - Mayyadah Abdullah Alkuwayti
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.I.A.E.-M.); (R.S.H.); (N.K.A.A.); (M.A.A.)
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Hanaa F. Abd El-Kareem
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt; (G.M.B.); (H.F.A.E.-K.)
| |
Collapse
|
3
|
Goshadezehn P, Babaei-Balderlou F, Razi M, Najafi GR, Abtahi-Foroushani M. A caffeine pre-treatment and sole effect of bone-marrow mesenchymal stem cells-derived conditioned media on hyperglycemia-suppressed fertilization. Biomed Pharmacother 2023; 165:115130. [PMID: 37413898 DOI: 10.1016/j.biopha.2023.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023] Open
Abstract
As a common metabolic disorder, hyperglycemia (HG) affects and disrupts the physiology of various systems in the body. Transplantation of mesenchymal stem cells (MSCs) has been used to control the complications of disease. Most of the therapeutic properties of MSCs are attributed to their secretome. This study aimed to investigate the effects of conditioned media extracted from sole or caffeine pre-treated bone-marrow-derived MSCs on hyperglycemia-induced detrimental impact on some aspects of reproduction. The HG was induced by intraperitoneally injection of streptozotocin (65 mg/kg) and nicotinamide (110 mg/kg). Twenty-four male Wistar rats (190 ± 20 g) were divided into control, HG, and the hyperglycemic groups receiving conditioned media of proliferated MSCs solely (CM) or MSCs pre-treated with caffeine (CCM). During the 49-day treatment, body weight and blood glucose were measured weekly. Finally, HbA1c, spermatogenesis development, sperm count, morphology, viability, motility, chromatin condensation, and DNA integrity were examined. Also, testicular total antioxidant capacity (TAC), malondialdehyde, sperm fertilization potential, and pre-implantation embryo development were evaluated. A one-way ANOVA and Tukey's post-hoc tests were used to analyze the quantitative data. The p < 0.05 was considered statistically significant. The CM and with a higher efficiency, the CCM remarkably (p < 0.05) improved body weight and HG-suppressed spermatogenesis, enhanced sperm parameters, chromatin condensation, DNA integrity, and TAC, reduced HbA1c, sperm abnormalities, and malondialdehyde, and significantly improved pre-implantation embryo development versus HG group. The conditioned media of MSCs solely (CM) and more effectively after pre-treatment of MSCs with caffeine (CCM) could improve spermatogenesis development, sperm quality, pre-implantation embryo development, and testicular global antioxidant potential during hyperglycemia.
Collapse
Affiliation(s)
| | | | - Mazdak Razi
- Division of Histology & Embryology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Gholam-Reza Najafi
- Division of Anatomy, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
4
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
5
|
Toprak V, Akalın SA, Öcal E, Çavuş Y, Özdemir İ. Histopathological examination of the protective effect of intense exercise in apoptotic germ cell damage due to diabetes. Acta Cir Bras 2023; 38:e381423. [PMID: 37098926 PMCID: PMC10129294 DOI: 10.1590/acb381423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 04/27/2023] Open
Abstract
PURPOSE The aim of this study was to determine the protective and antioxidative effects of intensive exercise on streptozotocin (STZ)-induced testicular damage, apoptotic spermatognial cells death, and oxidative stress. METHODS 36 male Sprague Dawley rats were divided into three groups: control, diabetes, and diabetes+intensive exercise (IE) groups. Testicular tissues were examined histopathologically and antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) activity, as well as serum testosterone level, were measured. RESULTS Seminiferous tubules and germ cells were found to be better in the testis tissue of the intense exercise group than in the diabetes group. Diabetes suppressed antioxidant enzymes CAT, SOD, GPx and testosterone levels were significantly decreased, and increased MDA level in the diabetic group compared to diabetes+IE group (p < 0.001). Following four weeks of treatment, intensive exercise improved the antioxidant defense, significantly decreased MDA activity, and increased testosterone levels in testicular tissue in the diabetic group compared to diabetes+IE group (p < 0.01). CONCLUSIONS STZ-induced diabetes causes damage to the testis tissue. In order to prevent these damages, exercise practice has become very popular nowadays. In present study, our intensive exercise protocol, histological, and biochemical analysis of the effect of diabetes on the testicular tissues is shown.
Collapse
Affiliation(s)
- Veysel Toprak
- Eyyübiye Education and Research Hospital - Department of Gynecology and Obstetrics - Şanlıurfa, Turkey
| | - Senem Alkan Akalın
- Private Medical Practice - Department of Gynecology and Obstetrics - Diyarbakir, Turkey
| | - Ece Öcal
- Antalya Research and Education Hospital - Department of Perinatology - Antalya, Turkey
| | - Yunus Çavuş
- Diyarbakir Memorial Hospital - Department of Gynecology and Obstetrics - Diyarbakir, Turkey
| | - İlhan Özdemir
- Atatürk University - Faculty of Medicine - Department of Gynecology and Obstetrics - Erzurum, Turkey
| |
Collapse
|
6
|
Roy S, Sarkar T, Chakraborty R. Vegetable seeds: A new perspective in future food development. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| | - Tanmay Sarkar
- Malda Polytechnic West Bengal State Council of Technical Education, Govt. of West Bengal Malda India
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata India
| |
Collapse
|
7
|
Ansari P, Choudhury ST, Seidel V, Rahman AB, Aziz MA, Richi AE, Rahman A, Jafrin UH, Hannan JMA, Abdel-Wahab YHA. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081146. [PMID: 36013325 PMCID: PMC9409999 DOI: 10.3390/life12081146] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/16/2022]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder that is spreading alarmingly around the globe. Type-2 DM (T2DM) is characterized by low-grade inflammation and insulin resistance and is closely linked to obesity. T2DM is mainly controlled by lifestyle/dietary changes and oral antidiabetic drugs but requires insulin in severe cases. Many of the drugs that are currently used to treat DM are costly and present adverse side effects. Several cellular, animal, and clinical studies have provided compelling evidence that flavonoids have therapeutic potential in the management of diabetes and its complications. Quercetin is a flavonoid, present in various natural sources, which has demonstrated in vitro and in vivo antidiabetic properties. It improves oral glucose tolerance, as well as pancreatic β-cell function to secrete insulin. It inhibits the α-glucosidase and DPP-IV enzymes, which prolong the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Quercetin also suppresses the release of pro-inflammatory markers such as IL-1β, IL-4, IL-6, and TNF-α. Further studies are warranted to elucidate the mode(s) of action of quercetin at the molecular level. This review demonstrates the therapeutic potential of quercetin in the management of T2DM.
Collapse
Affiliation(s)
- Prawej Ansari
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
- Correspondence: ; Tel.: +880-132-387-9720
| | - Samara T. Choudhury
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Akib Bin Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Md. Abdul Aziz
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Anika E. Richi
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Ayesha Rahman
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - Umme H. Jafrin
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
| | - J. M. A. Hannan
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh; (A.B.R.); (M.A.A.); (A.E.R.); (A.R.); (U.H.J.); (J.M.A.H.)
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh;
| | | |
Collapse
|
8
|
Comparison of the Effects of Allium cepa L. Extract Together with Insulin on Sperm Parameters in Diabetic Rats. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: In diabetic patients, uncontrolled blood sugar causes disorders in various systems of the body in the long term. The reproductive system is one of these susceptible systems. It is known that diabetes can adversely affect spermatogenesis. The use of medicinal plants in the treatment of various diseases has been discussed by many researchers for a long time. Onion, scientifically known as Allium cepa L., contains antioxidants. Insulin is also a drug used to control blood sugar in diabetic patients. Objectives: This study aimed to evaluate and compare in vivo antidiabetic activities of hydroalcoholic onion seed extract together with insulin in diabetic rats. Methods: In this study, diabetes was induced in rats with streptozotocin (60 mg/kg). Fifty animals were equally divided into five groups: nondiabetic control (group 1); diabetic control (group 2); diabetic rats receiving streptozotocin plus insulin (group 3); and diabetic rats treated with 200 and 400 mg/kg of Allium cepa L. seed extract by gavage for four weeks (groups 4 and 5). At the end of the study, the prostate ventral lobe was removed and processed for histological studies. Next, sperm parameters from the tail of the left epididymis, biochemical parameters, and histopathological changes were analyzed and compared. Results: The sperm parameters of diabetic rats receiving 200 and 400 mg/kg of Allium cepa L. extract showed a significant increase compared to the diabetic control group. Conclusions: Administration of Allium cepa L. extract as a strong antioxidant was adequate to compensate for the toxic effects of streptozotocin and increase the motility of sperms.
Collapse
|
9
|
Hosseinipour M, Asgari R, Kermani J, Goodarzi N, Bakhtiari M. The antioxidant effects of hydroalcoholic extract of Ashrasi date palm on sperm parameters and DNA fragmentation in diabetic rats. Animal Model Exp Med 2022; 5:281-287. [PMID: 35527404 PMCID: PMC9240738 DOI: 10.1002/ame2.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Diabetes‐induced oxidative stress can have adverse effects on sperm and its DNA integrity. The Ashrasi date palm (ADP) has potent antioxidant properties. The aim of this study was to evaluate the antioxidant effect of ADP hydroalcoholic extract on sperm parameters and sperm DNA fragmentation in diabetic rats. Methods Forty male rats were randomly divided into five groups (n = 7): 1, control; 2, diabetic; 3–5, diabetic + ADP (30, 90 and 270 mg/kg for groups 3, 4 and 5, respectively). After preparation of ADP extract and its phytochemical screening, it was administered orally to rats, once a day for 5 weeks. At the end of the study, sperm parameters and sperm DNA fragmentation in all groups were investigated. Results At doses of 90 and 270 mg/kg, ADP extract significantly increased the sperm viability compared to diabetic group 2 (p = 0.04 and p = 0.03, respectively) and resulted in a significant decrease in immotile sperm (p = 0.002 and p = 0.006, respectively). At a dose of 270 mg/kg, a considerable enhancement of forward sperm motility was observed (p = 0.04) and there was a significant decrease in sperm DNA fragmentation (p = 0.04). Conclusions The findings of the present study show for the first time that the hydroalcoholic extract of ADP has protective and antioxidant effects against diabetes‐induced oxidative stress and can improve sperm parameters and protect sperm DNA integrity.
Collapse
Affiliation(s)
| | - Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Javid Kermani
- Faculty of Veterinary Medicine Razi Universtiy Kermanshah Iran
| | - Nader Goodarzi
- Department of Basic and Pathobiological Sciences, Faculty of Veterinary Medicine Razi Universtiy Kermanshah Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
10
|
Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed Pharmacother 2021; 142:112018. [PMID: 34449317 DOI: 10.1016/j.biopha.2021.112018] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
The processing of tomato fruit into puree, juices, ketchup, sauces, and dried powders generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato processing by-products, particularly seeds, are reservoirs of health-promoting macromolecules, such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (α-tocopherol). Health-promoting properties make these bioactive components suitable candidates for the development of novel food and nutraceutical products. This review comprehensively demonstrates the bioactive compounds of tomato seeds along with diverse biomedical activities of tomato seed extract (TSE) for treating cardiovascular ailments, neurological disorders, and act as antioxidant, anticancer, and antimicrobial agent. Utilization of bioactive components can improve the economic feasibility of the tomato processing industry and may help to reduce the environmental pollution generated by tomato by-products.
Collapse
|