1
|
Khan H, Javaid S, Ashraf W, Siddique F, Bibi M, Ahmad T, Gill MSA, Abrar A, Alqahtani F, Imran I. Erqember Mitigates Neurotoxic Effects of Aluminum Chloride in Mice: Phytochemical Insights With Neurobehavioral and In Silico Approaches. J Toxicol 2025; 2025:3997995. [PMID: 40207183 PMCID: PMC11981706 DOI: 10.1155/jt/3997995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
The increasing popularity of herbal preparations has prompted people around the world to incorporate herbal products into their balanced diet, aiming to improve brain health and protect against neurological disorders. Erqember(Erq-Em) possesses a blend of various neuroprotective phytocompounds. The present study aimed to phytochemically analyze this polyherbal product and scientifically validate its neurological benefits. After chemical characterization through UHPLC-MS, in vivo studies involved the supplementation of mice with 10 and 20 mL/kg doses of Erq-Em in an AlCl3-induced amnesic mice model followed by behavioral assessment for anxiety and cognition in a battery of behavioral tests. Subsequently, whole brains were dissected for biochemical and histopathological analysis. Further, the study also included in silico studies to understand the interaction of detected phytocompounds with acetylcholinesterase protein. The outcomes revealed that mice treated with Eqr-Em were protected from anxiety-like behavior as they dose-dependently prefer innately frightening central, lightened, and elevated zones in OFT, L/D, and EPM tests. Moreover, the Erq-Em supplementation caused improved spontaneous learning in Y-maze and NOR tests, while their memory in passive avoidance and water maze tests was evident from longer step-through and shorter escape latencies, respectively. The biochemical analysis of brain homogenates showed a reduction in AchE and MDA while elevation in SOD and GPx levels in mice receiving Erq-Em. Moreover, the healthy and intact neuronal counts were markedly high in CA1 and DG regions of Nissl's-stained hippocampi of Erq-Em-treated mice. The compounds detected by UPLC-MS showed favorable BBB permeability and interacted well with acetylcholinesterase protein through in silico studies. Overall, the neurological benefits of Erqember might result from enhanced cholinergic neurotransmission and antioxidative activity of its phytocompounds, which together function as multimodal strategies against AlCl3-induced neurotoxicity.
Collapse
Affiliation(s)
- Habiba Khan
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehvish Bibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, Grenoble, France
| | - Muhammad Shoaib Ali Gill
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Asad Abrar
- Drug Testing Laboratory, Bahawalpur, Punjab, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
2
|
Tehreem S, Sabir A, Farooq M, Ashraf W, Alqahtani F, Ahmad T, Imran I. Unraveling the neuroprotective effect of perampanel and lacosamide combination in the corneal kindling model for epilepsy in mice. Animal Model Exp Med 2025; 8:222-238. [PMID: 39846432 PMCID: PMC11871093 DOI: 10.1002/ame2.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Scientific evidence to guide clinicians on the use of different antiseizure drugs in combination therapy is either very limited or lacking. In this study, the impact of lacosamide and perampanel alone and in combination was tested in corneal kindling model in mice, which is a cost-effective mechanism for screening of antiseizure drugs. METHODS The impact of lacosamide (5 mg/kg) and perampanel (0.125 mg/kg) alone and their combination was tested in corneal kindling process (3-mA current for 3 s applied twice daily for consecutive 12 days) in male BALB/c mice. Post-kindling, mice were subjected to a battery of behavioral tests assessing anxiety, memory, and depression-like behaviors. Brain tissues were then harvested for analysis of oxidative stress biomarkers. RESULTS Our results showed that the combination therapy of lacosamide and perampanel was more effective in reducing seizure progression than monotherapy of these drugs. Animals treated with combination therapy showed significant behavioral improvements, as reduced anxiety and depression were noticed, and their cognitive abilities were notably better compared to animals of all other groups. Moreover, biochemical assays of isolated brains from combination-treated group revealed lesser amount of oxidative stress. In addition, outcomes of dual regime were comparable to the phenytoin in seizure control but showed superior benefits in mitigation of kindling-prompted behavioral dysfunction and oxidative stress. CONCLUSIONS This study suggests that the lacosamide and perampanel combination therapy worked noticeably better in halting the corneal kindling process in mice and improved the epilepsy-associated psychiatric disorders that might be due to antioxidant effects of both drugs.
Collapse
Affiliation(s)
- Saba Tehreem
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | - Azka Sabir
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | - Maryam Farooq
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA/INSERM U1209/CNRS 5309Université Grenoble AlpesGrenobleFrance
| | - Imran Imran
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| |
Collapse
|
3
|
Younis NS, Almostafa MM, Mohamed ME. Geraniol Ameliorates Pentylenetetrazol-Induced Epilepsy, Neuroinflammation, and Oxidative Stress via Modulating the GABAergic Tract: In vitro and in vivo studies. Drug Des Devel Ther 2024; 18:5655-5672. [PMID: 39654600 PMCID: PMC11627104 DOI: 10.2147/dddt.s481985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Geraniol (Ger), a monoterpene, is a common constituent of several essential oils. This study explored the anticonvulsant effect of Ger in-vitro using nerve growth factor (NGF) prompted PC12 cell injured by Glutamate (Glu) and in-vivo using Pentylenetetrazole (PTZ)-induced kindling through the GABAergic pathway. Materials To assess the effect of Ger on NGF prompted PC12 cells injured by Glu, Ger at concentrations of 25, 50, 100, 200 and 400 μg/mL was used. GABA, 5-HT, IL-1β, IL-4, and TNF-α levels and the gene expressions of GABAA-Rα1, NMDAR1, GAD 65, GAD 67, GAT 1 and GAT 3 were measured in NGF-induced PC12 cells treated with Ger (100, and 200 μg/mL). Mice were randomly separated into five groups. Normal and PTZ groups in which mice were injected with saline or PTZ, respectively. PTZ + Ger 100, PTZ + Ger 200 and PTZ + SV groups in which mice orally administered Ger or sodium valproate (SV), respectively, then injected with PTZ. Results Ger up to 400 μg/mL did not display any toxicity or injury in PC12 cells. Ger (100 to 200 μg/mL) reduced the injury induced by Glu, increased the gene expression of GABAA-Rα1, GAD65 and GAD67 and decreased GAT 1, GAT 3 and NMDAR1 expression in NGF-induced PC12 cells damaged by Glu. Ger (100 to 200 μg/mL) increased GABA and reduced TNF-α, IL-4 and IL-1β levels in NGF-induced PC12 cells injured by Glu. As for the in-vivo results, Ger increased GABA, GAD, GAT 1 and 3 and lowered GABA T. Ger mitigated MDA, NO, IL-1β, IL-6, TNF-α and IFN-γ, GFAP, caspase-3, and -9 levels and Bax gene expression and escalated GSH, SOD, catalase, BDNF and Bcl2 gene expression. Conclusion Ger reduced the oxidative stress status, neuroinflammation and apoptosis and activated GABAergic neurotransmission, which might clarify its anticonvulsant. Ger protects animals against PTZ prompted kindling as established by the enhancement in short term as well as long-term memory. Ger mitigated the injury induced by Glu in NGF prompted PC12 cell.
Collapse
Affiliation(s)
- Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia
- Zagazig University Hospitals, Zagazig University, Zagazig, 44519, Egypt
| | - Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia
- Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Farooq T, Javaid S, Ashraf W, Rasool MF, Anjum SMM, Sabir A, Ahmad T, Alqarni SA, Alqahtani F, Imran I. Neuroprotective Effect of Brivaracetam and Perampanel Combination on Electrographic Seizures and Behavior Anomalies in Pentylenetetrazole-Kindled Mice. ACS OMEGA 2024; 9:26004-26019. [PMID: 38911714 PMCID: PMC11191135 DOI: 10.1021/acsomega.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Pentylenetetrazole (PTZ)-induced kindling is a broadly used experimental model to study the anticonvulsive potential of new and existing chemical moieties with the aim of discovering drugs hindering seizure progression and associated neurological comorbidities. In the present study, the impact of brivaracetam (BRV) (10 and 20 mg/kg) as monotherapy as well as in combination with 0.25 mg/kg of perampanel (PRP) was investigated on seizure progression with simultaneous electroencephalographic changes in PTZ kindling mouse model. Subsequently, mice were experimentally analyzed for anxiety, cognition, and depression after which their brains were biochemically evaluated for oxidative stress. The outcomes demonstrated that BRV alone delayed the kindling process, but BRV + PRP combination significantly (p < 0.0001) protected the mice from seizures of higher severity and demonstrated an antikindling effect. The PTZ-kindled mice exhibited anxiety, memory impairment, and depression in behavioral tests, which were remarkably less (p < 0.001) in animals treated with drug combination (in a dose-dependent manner) as these mice explored central, illuminated, and exposed zones of open-field test, light/dark box, and elevated plus maze. Moreover, memory impairment was demonstrated by kindled mice, which was significantly (p < 0.001) protected by BRV + PRP as animal's spontaneous alteration, object discrimination, and step-through latencies were increased in various tests employed for the assessment of cognitive abilities. The brains of PTZ-kindled mice had increased malondialdehyde and reduced antioxidant enzymes while treatment with BRV + PRP combination prevented kindling-induced elevation in oxidative markers. The outcomes of this study demonstrate that combining the PRP at low dose augmented the antiseizure properties of BRV as both drugs when administered simultaneously hindered the process of kindling by reducing PTZ-induced excessive electrical activity and oxidative stress in the brain.
Collapse
Affiliation(s)
- Talha Farooq
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
- Department
of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department
of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The
Institute of Pharmaceutical Sciences, University
of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Azka Sabir
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut
pour l’Avancée des Biosciences, Centre de Recherche
UGA/INSERM U1209/CNRS 5309, Université
Grenoble Alpes, Saint-Martin-d’Heres 38400, France
| | - Saleh A. Alqarni
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department
of Pharmacology, Faculty of Pharmacy, Bahauddin
Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
5
|
Tariq M, Javaid S, Ashraf W, Anjum SMM, Rasool MF, Siddique F, Ahmad T, Alsanea S, Alasmari F, Alqahtani F, Imran I. Unveiling the potential of perampanel and pregabalin in addressing pentylenetetrazole-induced electrographic alterations and neurobehavioral anomalies. Biomed Pharmacother 2024; 170:115935. [PMID: 38101280 DOI: 10.1016/j.biopha.2023.115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Chemical kindling is broadly used experimental model to investigate novel treatments on the process of epileptogenesis and coexisting behavioral comorbidities. The current study aimed to investigate the low dose perampanel (PER) (0.125 and 0.5 mg/kg) and pregabalin (PG) (15 mg/kg) as standalone treatments and in combination on kindling-induced seizure progression with concurrent electroencephalographic alterations. Mice were subjected to pentylenetetrazole (PTZ)-induced kindling followed by neurobehavioral assessment for anxiety-like activity and cognitive deficit through behavioral experiments. The monotherapy with PER at 0.5 mg/kg and PG at 15 mg/kg delayed the kindling process but PRP+PG yielded pronounced benefits and hindered the development of seizures of higher severity. PER+PG combination relieved the animals from anxiety-like behavior in various employed anxiogenic tests. Furthermore, the kindling-associated cognitive deficit was protected by PER+PG combination as increased alteration behavior, discrimination index and latencies to enter the dark zone were noted in y-maze, object recognition and passive avoidance tests, respectively while shorter escape latencies were noted in water maze. The brain samples of kindled mice had elevated malondialdehyde and reduced catalase, superoxide dismutase and glutathione peroxidase enzymes while treatment with PER and PG combination shielded the mice from heightened kindling-associated oxidative stress. Overall, the findings of the present study illustrate that concurrent administration of PER and PG effectively hindered the process of epileptogenesis by protecting neuronal excitability and brain oxidative stress. The results predict the dominance of PER and PG combination over monotherapy which might serve as an effective novel combination to combat drug resistance and behavioral disorders in epileptic patients.
Collapse
Affiliation(s)
- Maryam Tariq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Farhan Siddique
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
6
|
Ali H, Usman H, Ashraf W, Alqahtani F, Javaid S, Siddique F, Rasool MF, Imran I, Ahmad T, Abdel Rahman AM, AlMalki RH. Demaghi, a polyherbal formulation, mitigates aluminum chloride-induced neurological impairment in mice: Insights from phytochemical analysis and behavioral assessment. Heliyon 2023; 9:e21234. [PMID: 38027790 PMCID: PMC10643107 DOI: 10.1016/j.heliyon.2023.e21234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Herbal products have been very popular in Pakistan for their curative significance against various disorders. Demaghi (DEMG) is a widely used herbal product claimed to own natural substances having neuroprotective potential. The current study aims to scientifically validate the chemical composition as well as its neuroprotective claims of this widely used herbal tonic. The commercially available Demaghi product was chemically characterized for its phytocomposition. The mice were treated with two doses of Demaghi (DEMG 50 mg and 100 mg/kg/day), and the effects of its prolonged exposure on animal anxiety, memory, and depression were noted through a series of behavioral tests in the AlCl3-induced memory deficient mice model. Besides that, dissected brains were biochemically analyzed for oxidative stress markers and acetylcholinesterase activity, as well as histopathological changes. The study outcomes showed that DEMG (100 mg/kg/day) has prominent anti-anxiety effects, memory-enhancing properties, and anti-depressants effects observed in the AlCl3-induced memory-deficient mice model. Biochemical assays also showed a greater decrease in oxidative stress of tested animals treated with 100 mg/kg/day of DEMG. The histopathological analysis also revealed that administration of DEMG reduced the AlCl3-induced toxicity. UPLC-MS results revealed the presence of many phytoconstituents, which showed to support cholinergic signaling in in-silico studies. The current research validates the neurological benefits of Demaghi for memory-boosting properties. The phytocompounds present in Demaghi exert neuroprotective effects, possibly by enhancing the cholinergic neurotransmission and combating the neurotoxin-induced oxidative stress.
Collapse
Affiliation(s)
- Hassan Ali
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Hafiz Usman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
- Department of Pharmacy, The Women University, Multan, 60000, Pakistan
| | - Farhan Siddique
- Departmenmt of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l’Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, 11211, Saudi Arabia
| | - Reem H. AlMalki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Khurm M, Guo Y, Wu Q, Zhang X, Ghori MU, Rasool MF, Imran I, Saqib F, Wahid M, Guo Z. Conocarpus lancifolius (Combretaceae): Pharmacological Effects, LC-ESI-MS/MS Profiling and In Silico Attributes. Metabolites 2023; 13:794. [PMID: 37512501 PMCID: PMC10385132 DOI: 10.3390/metabo13070794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
In folklore medicine, Conocarpus lancifolius is used to treat various illnesses. The main objective of this study was a comprehensive investigation of Conocarpus lancifolius leaf aqueous extract (CLAE) for its antioxidant, cardioprotective, anxiolytic, antidepressant and memory-enhancing capabilities by using different in vitro, in vivo and in silico models. The in vitro experimentation revealed that CLAE consumed an ample amount of total phenolics (67.70 ± 0.15 µg GAE/mg) and flavonoids (47.54 ± 0.45 µg QE/mg) with stronger antiradical effects through DPPH (IC50 = 16.66 ± 0.42 µg/mL), TAC (77.33 ± 0.41 µg AAE/mg) and TRP (79.11 ± 0.67 µg GAE/mg) assays. The extract also displayed suitable acetylcholinesterase (AChE) inhibitory (IC50 = 110.13 ± 1.71 µg/mL) activity through a modified Ellman's method. The toxicology examination presented no mortality or any signs of clinical toxicity in both single-dose and repeated-dose tests. In line with the cardioprotective study, the pretreatment of CLAE was found to be effective in relieving the isoproterenol (ISO)-induced myocardial injury in rats by normalizing the heart weight index, serum cardiac biomarkers, lipid profile and various histopathological variations. In the noise-stress-induced model for behavior attributes, the results demonstrated that CLAE has the tendency to increase the time spent in the central zone and elevated open arms in the open field and elevated plus maze tests (examined for anxiety assessment), reduced periods of immobility in the forced swimming test (for depression) and improved recognition and working memory in the novel object recognition and Morris water maze tests, respectively. Moreover, the LC-ESI-MS/MS profiling predicted 53 phytocompounds in CLAE. The drug-likeness and ADMET analysis exhibited that the majority of the identified compounds have reasonable physicochemical and pharmacokinetic profiles. The co-expression of molecular docking and network analysis indicated that top-ranked CLAE phytoconstituents act efficiently against the key proteins and target multiple signaling pathways to exert its cardiovascular-protectant, anxiolytic, antidepressant and memory-enhancing activity. Hence, this artifact illustrates that the observed biological properties of CLAE elucidate its significance as a sustainable source of bioactive phytochemicals, which appears to be advantageous for pursuing further studies for the development of new therapeutic agents of desired interest.
Collapse
Affiliation(s)
- Muhammad Khurm
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuting Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qingqing Wu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinxin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Muhammad Umer Ghori
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zengjun Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
8
|
Sun Y, Xia X, Yuan G, Zhang T, Deng B, Feng X, Wang Q. Stachydrine, a Bioactive Equilibrist for Synephrine, Identified from Four Citrus Chinese Herbs. Molecules 2023; 28:molecules28093813. [PMID: 37175222 PMCID: PMC10180305 DOI: 10.3390/molecules28093813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Four Chinese herbs from the Citrus genus, namely Aurantii Fructus Immaturus (Zhishi), Aurantii Fructus (Zhiqiao), Citri Reticulatae Pericarpium Viride (Qingpi) and Citri Reticulatae Pericarpium (Chenpi), are widely used for treating various cardiovascular and gastrointestinal diseases. Many ingredients have already been identified from these herbs, and their various bioactivities provide some interpretations for the pharmacological functions of these herbs. However, the complex functions of these herbs imply undisclosed cholinergic activity. To discover some ingredients with cholinergic activity and further clarify possible reasons for the complex pharmacological functions presented by these herbs, depending on the extended structure-activity relationships of cholinergic and anti-cholinergic agents, a simple method was established here for quickly discovering possible choline analogs using a specific TLC method, and then stachydrine and choline were first identified from these Citrus herb decoctions based on their NMR and HRMS data. After this, two TLC scanning (TLCS) methods were first established for the quantitative analyses of stachydrine and choline, and the contents of the two ingredients and synephrine in 39 samples were determined using the valid TLCS and HPLC methods, respectively. The results showed that the contents of stachydrine (3.04‱) were 2.4 times greater than those of synephrine (1.25‱) in Zhiqiao and about one-third to two-thirds of those of Zhishi, Qingpi and Chenpi. Simultaneously, the contents of stachydrine, choline and synephrine in these herbs present similar decreasing trends with the delay of harvest time; e.g., those of stachydrine decrease from 5.16‱ (Zhishi) to 3.04‱ (Zhike) and from 1.98‱ (Qingpi) to 1.68‱ (Chenpi). Differently, the contents of synephrine decrease the fastest, while those of stachydrine decrease the slowest. Based on these results, compared with the pharmacological activities and pharmacokinetics reported for stachydrine and synephrine, it is indicated that stachydrine can be considered as a bioactive equilibrist for synephrine, especially in the cardio-cerebrovascular protection from these citrus herbs. Additionally, the results confirmed that stachydrine plays an important role in the pharmacological functions of these citrus herbs, especially in dual-directionally regulating the uterus, and in various beneficial effects on the cardio-cerebrovascular system, kidneys and liver.
Collapse
Affiliation(s)
- Yifei Sun
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuexue Xia
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ganjun Yuan
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tongke Zhang
- Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Beibei Deng
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xinyu Feng
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qixuan Wang
- Laboratory of Natural Medicine and Microbiological Drug, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
9
|
Javaid S, Alqahtani F, Ashraf W, Anjum SMM, Rasool MF, Ahmad T, Alasmari F, Alasmari AF, Alqarni SA, Imran I. Tiagabine suppresses pentylenetetrazole-induced seizures in mice and improves behavioral and cognitive parameters by modulating BDNF/TrkB expression and neuroinflammatory markers. Biomed Pharmacother 2023; 160:114406. [PMID: 36791567 DOI: 10.1016/j.biopha.2023.114406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Tiagabine (Tia), a new-generation antiseizure drug that mimics the GABAergic signaling by inhibiting GABA transporter type-1, is the least studied molecule in chronic epilepsy models with comorbid neurobehavioral and neuroinflammatory parameters. Therefore, the current study investigated the effects of Tia in a real-time manner on electroencephalographic (EEG) activity, behavioral manifestations and mRNA expression in pentylenetetrazole (PTZ)-kindled mice. Male BALB/c mice were treated with tiagabine (0.5, 1 and 2 mg/kg) for 21 days with simultaneous PTZ (40 mg/kg) injection every other day for a total of 11 injections and monitored for seizure progression with synchronized validation through EEG recordings from cortical electrodes. The post-kindling protection from anxiety and memory deficit was verified by a battery of behavioral experiments. Isolated brains were evaluated for oxidative alterations and real-time changes in mRNA expression for BDNF/TrkB, GAT-1 and GAT-3 as well as neuroinflammatory markers. Experimental results revealed that Tia at the dose of 2 mg/kg maximally inhibited the development of full bloom seizure and reduced epileptic spike discharges from the cortex. Furthermore, Tia dose-dependently exerted the anxiolytic effects and protected from PTZ-evoked cognitive impairment. Tia reduced lipid peroxidation and increased superoxide dismutase and glutathione levels in the brain via augmentation of GABAergic modulation. PTZ-induced upregulated BDNF/TrkB signaling and pro-inflammatory cytokines were mitigated by Tia with upregulation of GAT-1 and GAT-3 transporters in whole brains. In conclusion, the observed effects of Tia might have resulted from reduced oxidative stress, BDNF/TrkB modulation and mitigated neuroinflammatory markers expression leading to reduced epileptogenesis and improved epilepsy-related neuropsychiatric effects.
Collapse
Affiliation(s)
- Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Abdullah Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
10
|
Muhammad Abdur Rahman H, Javaid S, Ashraf W, Fawad Rasool M, Saleem H, Ali Khan S, Ul-Haq Z, Muhammad Muneeb Anjum S, Ahmad T, Alqahtani F, Ur Rehman A, Imran I. Effects of long-term Ailanthus altissima extract supplementation on fear, cognition and brain antioxidant levels. Saudi Pharm J 2023; 31:191-206. [PMID: 36942273 PMCID: PMC10023549 DOI: 10.1016/j.jsps.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Ailanthus altissima is an indigenous plant known for various remedial properties. The present study aimed to evaluate the neuroprotective potential of methanolic extract Ailanthus altissima (AA) bark as current scientific trend is searching plant for neurodegenerative diseases, worldwide. Methodology In in-vitro experiments, the AA was analyzed for phenols, flavonoids, antioxidative and cholinesterase inhibitory properties with subsequent detailed characterization for secondary metabolites. The in-vivo neurological effects were evaluated in rats through behavioral assessment for anxiety and memory after chronic administration (28 days) of 50-200 mg/kg of AA. At the end of behavior studies, isolated brains were biochemically tested to determine antioxidant enzyme activity. Results AA was found rich in phenols/flavonoids and active in radical scavenging with the presence of 13 secondary metabolites in UHPLC-MS analysis. The AA yielded anxiolytic effects dose-dependently in the open field, light/dark and elevated-plus maze tests as animals significantly (P < 0.05 vs control group) preferred open arena, illuminated zone and exposed arms of maze. Similarly, the animals treated with AA showed significant (P < 0.05 vs amnesic group) increase in spontaneous alternation, discrimination index in y-maze, novel object recognition tests. Further, AA.Cr treated rats showed noticeably shorter escape latencies in Morris water maze tests.In biochemical analysis, the dissected brains AA treated rats showed reduced levels of AChE and malondialdehyde with increased levels of first-line antioxidant enzymes i.e. glutathione peroxidase and superoxide dismutase. These observed biological effects might be attributed to phenols and flavonoids constituents owned by AA. -The in-silico studies showed thatconessine and lophirone J phytocompounds have good blood-brain barrier permeability and interaction with AChE. Conclusion The outcomes of this study validate that bark of Ailanthus altissima might work as a source of bioactive phytochemicals of neuroprotective potential.
Collapse
Affiliation(s)
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Hammad Saleem
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan, 75270, Pakistan
| | - Salman Ali Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan, 75270, Pakistan
| | - Tanveer Ahmad
- Institut pour l’Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Anees Ur Rehman
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Corresponding authors.
| |
Collapse
|
11
|
Ali HS, Engidawork E. Antidepressant-Like Activity of Solvent Fractions of the Root Bark of Carissa spinarum Linn. (Apocynaceae) in Rodents Involves Multiple Signaling Pathways. J Exp Pharmacol 2022; 14:379-394. [PMID: 36531440 PMCID: PMC9748120 DOI: 10.2147/jep.s386015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 09/10/2024] Open
Abstract
Background The root bark of Carissa spinarum Linn. (Apocynaceae) is claimed to be used for the management of depression in Ethiopian folkloric medicine, and the crude extract has been reported to possess antidepressant-like activity in rodents. Objective This study aimed to evaluate the antidepressant-like effect of different fractions of the root bark in rodents and the possible underlying mechanisms in rats. Methods A 70% ethanol extract of the root bark was successively fractionated with n-butanol, ethyl acetate, and water. Animals of both sexes received 2% Tween 80, imipramine (30 mg/kg), or various doses (50, 100, 200 mg/kg) of the fractions. Duration of immobility was determined using the tail suspension test and the forced swim test. Locomotor activity was evaluated in the open field test. Serum corticosterone levels, total phenols, flavonoids, and alkaloids were determined. Preliminary mechanistic studies were also performed to explore possible mechanisms of action of the active fraction. Results All fractions but the aqueous fraction significantly (p<0.001) decreased the duration of immobility in both tests, with the ethyl acetate fraction being the most active. The locomotor test revealed that the activity was not due to non-specific psycho-stimulant effects. Serum corticosterone levels were reduced by both fractions, with the ethyl acetate fraction again being the most effective. Mechanistic studies showed the involvement of multiple neurotransmission systems, including adrenergic, dopaminergic and cholinergic as well as L-Arginine-NO-cGMP pathway. Higher contents of phenols (42.42 vs 29.8 mgGAE/g), flavonoids (12.43 vs 2.07 mgQE/g), and alkaloids (0.17 vs 0.07 mgATE/g) were found in the ethyl acetate than in the n-butanol fraction. Conclusion The present findings collectively indicate that the ethyl acetate and n-butanol fractions are endowed with antidepressant-like activity due to the presence of phenols, flavonoids, and alkaloids, which are medium polar in nature.
Collapse
Affiliation(s)
- Hana Saif Ali
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Mechanistic Insights into the Neuroprotective Potential of Sacred Ficus Trees. Nutrients 2022; 14:nu14224731. [PMID: 36432418 PMCID: PMC9695857 DOI: 10.3390/nu14224731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Ficus religiosa (Bo tree or sacred fig) and Ficus benghalensis (Indian banyan) are of immense spiritual and therapeutic importance. Various parts of these trees have been investigated for their antioxidant, antimicrobial, anticonvulsant, antidiabetic, anti-inflammatory, analgesic, hepatoprotective, dermoprotective, and nephroprotective properties. Previous reviews of Ficus mostly discussed traditional usages, photochemistry, and pharmacological activities, though comprehensive reviews of the neuroprotective potential of these Ficus species extracts and/or their important phytocompounds are lacking. The interesting phytocompounds from these trees include many bengalenosides, carotenoids, flavonoids (leucopelargonidin-3-O-β-d-glucopyranoside, leucopelargonidin-3-O-α-l-rhamnopyranoside, lupeol, cetyl behenate, and α-amyrin acetate), flavonols (kaempferol, quercetin, myricetin), leucocyanidin, phytosterols (bergapten, bergaptol, lanosterol, β-sitosterol, stigmasterol), terpenes (α-thujene, α-pinene, β-pinene, α-terpinene, limonene, β-ocimene, β-bourbonene, β-caryophyllene, α-trans-bergamotene, α-copaene, aromadendrene, α-humulene, alloaromadendrene, germacrene, γ-cadinene, and δ-cadinene), and diverse polyphenols (tannin, wax, saponin, leucoanthocyanin), contributing significantly to their pharmacological effects, ranging from antimicrobial action to neuroprotection. This review presents extensive mechanistic insights into the neuroprotective potential, especially important phytochemicals from F. religiosa and F. benghalensis. Owing to the complex pathophysiology of neurodegenerative disorders (NDDs), the currently existing drugs merely alleviate the symptoms. Hence, bioactive compounds with potent neuroprotective effects through a multitarget approach would be of great interest in developing pharmacophores for the treatment of NDDs.
Collapse
|
13
|
Aleem A, Shahnaz S, Javaid S, Ashraf W, Rasool MF, Ahmad T, F.Alotaibi A, Albeshri KS, Alqahtani F, Imran I. Chronically administered Agave americana var. marginata extract ameliorates diabetes mellitus, associated behavioral comorbidities and biochemical parameters in alloxan-induced diabetic rats. Saudi Pharm J 2022; 30:1373-1386. [DOI: 10.1016/j.jsps.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
|
14
|
Rehman Z, Farooq T, Javaid S, Ashraf W, Fawad Rasool M, Samad N, Tariq M, Muhammad Muneeb Anjum S, Sivandzade F, Alotaibi F, Alqahtani F, Imran I. Combination of levetiracetam with sodium selenite prevents pentylenetetrazole-induced kindling and behavioral comorbidities in rats. Saudi Pharm J 2022; 30:494-507. [PMID: 35693436 PMCID: PMC9177457 DOI: 10.1016/j.jsps.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/05/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talha Farooq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Sciences, Bahauddin Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Maryam Tariq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Farzane Sivandzade
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Faisal Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| |
Collapse
|
15
|
Iltaf J, Noreen S, Rehman MFU, Ghumman SA, Batool F, Mehdi M, Hasan S, Ijaz B, Akram MS, Butt H. Ficus benghalensis as Potential Inhibitor of 5 α-Reductase for Hair Growth Promotion: In Vitro, In Silico, and In Vivo Evaluation. Front Pharmacol 2021; 12:774583. [PMID: 34950034 PMCID: PMC8688993 DOI: 10.3389/fphar.2021.774583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The screening of hair follicles, dermal papilla cells, and keratinocytes through in vitro, in vivo, and histology has previously been reported to combat alopecia. Ficus benghalensis has been used conventionally to cure skin and hair disorders, although its effect on 5α-reductase II is still unknown. Currently, we aim to analyze the phytotherapeutic impact of F. benghalensis leaf extracts (FBLEs) for promoting hair growth in rabbits along with in vitro inhibition of the steroid isozyme 5α-reductase II. The inhibition of 5α-reductase II by FBLEs was assessed by RP-HPLC, using the NADPH cofactor as the reaction initiator and Minoxin (5%) as a positive control. In silico studies were performed using AutoDock Vina to visualize the interaction between 5α-reductase II and the reported phytoconstituents present in FBLEs. Hair growth in female albino rabbits was investigated by applying an oral dose of the FBLE formulation and control drug to the skin once a day. The skin tissues were examined by histology to see hair follicles. Further, FAAS, FTIR, and antioxidants were performed to check the trace elements and secondary metabolites in the FBLEs. The results of RP-HPLC and the binding energies showed that FBLEs reduced the catalytic activity of 5α-reductase II and improved cell proliferation in rabbits. The statistical analysis (p < 0.05 or 0.01) and percentage inhibition (>70%) suggested that hydroalcoholic FBLE has more potential in increasing hair growth by elongating hair follicle's anagen phase. FAAS, FTIR, and antioxidant experiments revealed sufficient concentrations of Zn, Cu, K, and Fe, together with the presence of polyphenols and scavenging activity in FBLE. Overall, we found that FBLEs are potent in stimulating hair follicle maturation by reducing the 5α-reductase II action, so they may serve as a principal choice in de novo drug designing to treat hair loss.
Collapse
Affiliation(s)
- Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | | | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Mehdi
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Sajjad Haider M, Ashraf W, Javaid S, Fawad Rasool M, Muhammad Abdur Rahman H, Saleem H, Muhammad Muneeb Anjum S, Siddique F, Morales-Bayuelo A, Kaya S, Alqahtani F, Alasmari F, Imran I. Chemical characterization and evaluation of the neuroprotective potential of Indigofera sessiliflora through in-silico studies and behavioral tests in scopolamine-induced memory compromised rats. Saudi J Biol Sci 2021; 28:4384-4398. [PMID: 34354423 PMCID: PMC8325032 DOI: 10.1016/j.sjbs.2021.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/23/2023] Open
Abstract
In the current study, we investigated the phytochemical and neuropharmacological potential of Indigofera sessiliflora, an indigenous least characterized plant widely distributed in deserted areas of Pakistan. The crude extract of the whole plant Indigofera sessiliflora (IS.CR) was preliminary tested in-vitro for the existence of polyphenol content, antioxidant and anticholinesterase potential followed by detailed chemical characterization through UHPLC-MS. Rats administered with different doses of IS.CR (100-300 mg/kg) for the duration of 4-weeks were behaviorally tested for anxiety and cognition followed by biochemical evaluation of dissected brain. The in-silico studies were employed to predict the blood-brain barrier crossing tendencies of secondary metabolites with the elucidation of the target binding site. The in-vitro assays revealed ample phenols and flavonoids content in IS.CR with adequate anti-oxidant and anticholinesterase potential. The dose-dependent anxiolytic potential of IS.CR was demonstrated in open field (OFT), light/dark (L/D) and elevated plus maze (EPM) tests as animals spent more time in open, illuminated and elevated zones (P < 0.05). In the behavioral tests for learning/memory, the IS.CR reversed the scopolamine-induced cognitive deficits, as animals showed better (P < 0.05) spontaneous alternation and discrimination index in y-maze and novel object recognition (NOR) tests. Similarly, as compared to amnesic rats, the step-through latencies were increased (P < 0.05) and escape latencies were decreased (P < 0.05) in passive avoidance (PAT) and Morris water maze (MWM) tests, respectively. Biochemical analysis of rat brains showed significant reduction in malondialdehyde and acetylcholinesterase levels, alongwith preservation of glutathione peroxidase and superoxide dismutase activity. The docking studies further portrayed a possible interaction of detected phytoconstituents with acetylcholinesterase target. The results of the study show valuable therapeutic potential of phytoconstituents present in IS.CR to correct the neurological disarrays which might be through antioxidant activity or via modulation of GABAergic and cholinergic systems by artocommunol, 1,9-dideoxyforskolin and 6E,9E-octadecadienoic acid.
Collapse
Affiliation(s)
- Muhammad Sajjad Haider
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Hammad Saleem
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Alejandro Morales-Bayuelo
- Facultad de Ingenierías, Centro de Investigación de Procesos del Tecnologico Comfenalco, (CIPTEC), Programa de Ingeniería Industrial, Fundacion Universitaria Tecnologico, Comfenalco -Cartagena, Bolívar, Colombia
| | - Savas Kaya
- Sivas Cumhuriyet University Health Services Vocational School, Department of Pharmacy, 8140 Sivas, Turkey
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
17
|
Hussain I, Rehman K, Ashraf MA, Rasheed R, Gul J, Akash MSH, Bashir R. Effect of Pharmaceutical Effluents on Growth, Oxidative Defense, Secondary Metabolism, and Ion Homeostasis in Carrot. Dose Response 2021; 19:1559325821998506. [PMID: 33911988 PMCID: PMC8047843 DOI: 10.1177/1559325821998506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Pharmaceutical wastes are environmental micro pollutant and potential risk for the ecosystem. Therefore, the present study was planned to find out the effects of different pharmaceutical effluent (PE) regimes on growth, secondary metabolism, and oxidative defense in 2 carrot lines. The seeds of 2 carrot lines (DC-3 and T-29) were spread in plastic pots containing sandy loam soil. The design of experiment was completely randomized with 3 replicates per treatment. At vegetative stage, plants were irrigated with 5 different doses (control), 25%, 50%, 75% and 100%) of PE on every 3-day interval, while control plants were irrigated with canal water. The carrot roots were harvested after 25 days’ application of the treatments to determine various attributes. High concentration of PE caused a substantial decline in growth, beta carotenoids, anthocyanin, total soluble protein, free amino acids, total soluble sugar, phenolic and flavonoid contents and an increase in proline, levels of H2O2 and MDA, activities of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) in both lines. Moreover, PE caused significant reduction in the levels of essential nutrients (K+, Ca2+) and increased in Na+ content. However, T-29 line was found to be more PE tolerant because it had less H2O2, MDA and ascorbic acid contents. Thus, our findings showed that diluted PE (25%) could not be used for irrigation to increase the growth of plants in nutrients deprived environments without using bio filtration and biocarbon sorption technologies for treatments.
Collapse
Affiliation(s)
- Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Javeria Gul
- Department of Botany, Government College University, Faisalabad, Pakistan
| | | | - Rohina Bashir
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
18
|
Javaid U, Javaid S, Ashraf W, Rasool MF, Noman OM, Alqahtani AS, Majeed A, Shakeel W, Albekairi TH, Alqahtani F, Imran I. Chemical Profiling and Dose-Dependent Assessment of Fear Reducing and Memory-Enhancing Effects of Solanum virginianum in Rats. Dose Response 2021; 19:1559325821998486. [PMID: 33746655 PMCID: PMC7940748 DOI: 10.1177/1559325821998486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
The current study was planned to investigate the pharmacological basis of Solanum virginianum extract (SV.CR) pertaining to anxiolytic, antidepressant and memory-enhancing effects in rats. The SV.CR was analyzed in-vitro for phytoconstituents, antioxidant potential and anticholinesterase activity. The rats treated in a dose-dependent manner (25, 50 and 100 mg/kg of SV.CR) were subjected to behavioral tests for anxiety, depression and memory judgment followed by biochemical studies. A notable dose-dependent anxiolytic potential of SV.CR was observed in elevated plus maze and open field tests (P < 0.05). The decreased immobility time of the treated rats in the forced swim test (P < 0.01) unveiled the plant’s potential to reduce depression. Moreover, SV.CR treatment also reversed scopolamine-impaired cognition (P < 0.05) in various deployed memory and learning tasks. Biochemical studies of brain homogenates of SV.CR treated animals demonstrated decreased anticholinesterase activity and lipid peroxidation levels whereas increased levels of superoxide dismutase and glutathione peroxidase (P < 0.05 vs scopolamine group) were noted. The scientific validation of the study supported the use of Solanum virginianum in reducing anxiety, depression and amnesia in experimental models. Phytoconstituents in SV.CR such as oleanolic acid and caffeic acid might have played a significant neuroprotective role via modulation of oxidative stress and neurochemical aspects.
Collapse
Affiliation(s)
- Usman Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.,Department of Pharmacy, The Women University, Multan, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Majeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Waleed Shakeel
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
19
|
Imran I, Javaid S, Waheed A, Rasool MF, Majeed A, Samad N, Saeed H, Alqahtani F, Ahmed MM, Alaqil FA. Grewia asiatica Berry Juice Diminishes Anxiety, Depression, and Scopolamine-Induced Learning and Memory Impairment in Behavioral Experimental Animal Models. Front Nutr 2021; 7:587367. [PMID: 33521033 PMCID: PMC7844311 DOI: 10.3389/fnut.2020.587367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Grewia asiatica L. fruit natively called phalsa is a popular berry of Pakistan and widely consumed in the form of fresh juices and carbonated drinks in the summer season. The berry is enriched with antioxidants such as phenols, flavonoids, anthocyanins, and vitamin C. Scientifically, it is the least explored berry in terms of neuromodulatory activities, and therefore, in the designed study, chronically fed rats with the different dilutions (5%-30%) of fruit juice were subjected to behavioral assessment for anxiety, depression, and cognition (spatial memory) followed by biochemical analysis of isolated brains. Results revealed a prominent impact of 20 and 30% dilutions of fruit exudate as treated animals showed anxiolytic behavior to central zone (P < 0.05) of open field test (OFT) and open arms of elevated plus maze (EPM) (P < 0.05) in anxiety models. Overall, immobility of rats treated with a higher concentration of exudate in forced swim test (FST) was reduced (P < 0.05) presenting antidepressant-like activity. Moreover, in learning and memory experimental models, the treated animals reversed scopolamine-induced amnesic effects as evident from improved step-through latencies (P < 0.05 vs. scopolamine; passive avoidance test), spontaneous alternation behavior (P < 0.05 vs. scopolamine; Y-maze test), discrimination index (P < 0.05 vs. scopolamine; novel object recognition test), and escape latencies (P < 0.05 vs. scopolamine; Morris water maze). Biochemical studies of isolated brains from treated rats demonstrated significantly elevated levels of superoxide dismutase and glutathione peroxidase (P < 0.05), whereas levels of acetylcholinesterase and malondialdehyde level (P < 0.05) were reduced, indicating its potential to reduce oxidative damage in the brain and modulation with the cholinergic system. The outcomes of studies support the benefits of phytoconstituents possessed by G. asiatica fruit in the amelioration of neurological disorders that could be due to their antioxidative capacity or due to interaction with GABAergic, serotonergic, and cholinergic systems in the brain.
Collapse
Affiliation(s)
- Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Aroosa Waheed
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Majeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faten Abdullah Alaqil
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|