1
|
Yang X, Li H, Yang C, Ge J. Supplementation with stigma maydis polysaccharide attenuates autism-like behaviors and improves gut function in valproic acid-induced autism model male rats. Int J Dev Neurosci 2024; 84:567-580. [PMID: 38923604 DOI: 10.1002/jdn.10354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Stigma maydis polysaccharide (SMPS) has regulatory effect on the intestinal microflora and promotes gastrointestinal peristalsis. Children with autism spectrum disorder (ASD) often experience gastrointestinal problems and dysbiosis in their gut microbiota. Our previous study revealed that SMPS interventions had an impact on the gut microbiota of valproic acid (VPA)-induced autism model rats. However, the effects of SMPS on the behavior and gut function of autism model rats remain poorly understood. Therefore, we gave different doses of SMPS intervention in the early stage of autism model rats to observe their developmental conditions and behavior performances. Through histological evaluation and real-time polymerase chain reaction (PCR), integrity of the intestinal structure and the expression of tight junction-related gene Zo-1 and Occludin were detected. The results indicated that SMPS intervention improved the physical development, learning and memory impairment, and social performance of autism model rats. Meanwhile, SMPS promoted intestinal peristalsis and restored the integrity of the intestinal structure, reduced the number of inflammatory cells, and increased the expression of the Zo-1 and Occludin genes. Furthermore, the expression levels of neurotransmitters (substance P, enkephalin, vasoactive intestinal peptide, and 5-hydroxytryptamine) in the hippocampal tissues were altered after SMPS treatment. In conclusion, SMPS could ameliorate ASD-like phenotypes and gut problems in autism model rats. Collectively, these results provide new evidence for the relationship between the gut-brain axis and ASD and suggest a novel therapeutic target for ASD treatment.
Collapse
Affiliation(s)
- Xiaolei Yang
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Hongjie Li
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Chao Yang
- Department of Preventive Treatment, Qiqihar Hospital of Traditional Chinese Medicine, Qiqihar, China
| | - Jie Ge
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
2
|
Faraji M, Viera-Resto OA, Berrios BJ, Bizon JL, Setlow B. Effects of systemic oxytocin receptor activation and blockade on risky decision making in female and male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593981. [PMID: 38798601 PMCID: PMC11118492 DOI: 10.1101/2024.05.13.593981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The neuropeptide oxytocin is traditionally known for its roles in parturition, lactation, and social behavior. Other data, however, show that oxytocin can modulate behaviors outside of these contexts, including drug self-administration and some aspects of cost-benefit decision making. Here we used a pharmacological approach to investigate the contributions of oxytocin signaling to decision making under risk of explicit punishment. Female and male Long-Evans rats were trained on a risky decision-making task in which they chose between a small, "safe" food reward and a large, "risky" food reward that was accompanied by varying probabilities of mild footshock. Once stable choice behavior emerged, rats were tested in the task following acute intraperitoneal injections of oxytocin or the oxytocin receptor antagonist L-368,899. Neither drug affected task performance in males. In females, however, both oxytocin and L-368,899 caused a dose-dependent reduction in preference for large risky reward. Control experiments showed that these effects could not be accounted for by alterations in food motivation or shock sensitivity. Together, these results reveal a sex-dependent effect of oxytocin signaling on risky decision making in rats.
Collapse
Affiliation(s)
- Mojdeh Faraji
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
| | | | | | - Jennifer L Bizon
- Center for Addiction Research and Education, University of Florida
- Department of Neuroscience, University of Florida
- McKnight Brain Institute, University of Florida
| | - Barry Setlow
- Department of Psychiatry, University of Florida
- Center for Addiction Research and Education, University of Florida
- McKnight Brain Institute, University of Florida
| |
Collapse
|
3
|
Kamrani-Sharif R, Hayes AW, Gholami M, Salehirad M, Allahverdikhani M, Motaghinejad M, Emanuele E. Oxytocin as neuro-hormone and neuro-regulator exert neuroprotective properties: A mechanistic graphical review. Neuropeptides 2023; 101:102352. [PMID: 37354708 DOI: 10.1016/j.npep.2023.102352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neurodegeneration is progressive cell loss in specific neuronal populations, often resulting in clinical consequences with significant medical, societal, and economic implications. Because of its antioxidant, anti-inflammatory, and anti-apoptotic properties, oxytocin has been proposed as a potential neuroprotective and neurobehavioral therapeutic agent, including modulating mood disturbances and cognitive enchantment. METHODS Literature searches were conducted using the following databases Web of Science, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, and Cochrane from January 2000 to February 2023 for articles dealing with oxytocin neuroprotective properties in preventing or treating neurodegenerative disorders and diseases with a focus on oxidative stress, inflammation, and apoptosis/cell death. RESULTS The neuroprotective effects of oxytocin appears to be mediated by its anti-inflammatory properties, inhibition of neuro inflammation, activation of several antioxidant enzymes, inhibition of oxidative stress and free radical formation, activation of free radical scavengers, prevent of mitochondrial dysfunction, and inhibition of apoptosis. CONCLUSION Oxytocin acts as a neuroprotective agent by preventing neuro-apoptosis, neuro-inflammation, and neuronal oxidative stress, and by restoring mitochondrial function.
Collapse
Affiliation(s)
- Roya Kamrani-Sharif
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Allahverdikhani
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
4
|
Barzegari A, Mahdirejei HA, Hanani M, Esmaeili MH, Salari AA. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines. Physiol Behav 2023; 269:114264. [PMID: 37295664 DOI: 10.1016/j.physbeh.2023.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) treatment during pregnancy is a risk factor for developing autism spectrum disorder, cognitive deficits, and stress-related disorders in children. No effective therapeutic strategies are currently approved to treat or manage core symptoms of autism. Active lifestyles and physical activity are closely associated with health and quality of life during childhood and adulthood. This study aimed to evaluate whether swimming exercise during adolescence can prevent the development of cognitive dysfunction and stress-related disorders in prenatally VPA-exposed mice offspring. Pregnant mice received VPA, afterwards, offspring were subjected to swimming exercise. We assessed neurobehavioral performances and inflammatory cytokines (interleukin-(IL)6, tumor-necrosis-factor-(TNF)α, interferon-(IFN)γ, and IL-17A) in the hippocampus and prefrontal cortex of offspring. Prenatal VPA treatment increased anxiety-and anhedonia-like behavior and decreased social behavior in male and female offspring. Prenatal VPA exposure also increased behavioral despair and reduced working and recognition memory in male offspring. Although prenatal VPA increased hippocampal IL-6 and IFN-γ, and prefrontal IFN-γ and IL-17 in males, it only increased hippocampal TNF-α and IFN-γ in female offspring. Adolescent exercise made VPA-treated male and female offspring resistant to anxiety-and anhedonia-like behavior in adulthood, whereas it only made VPA-exposed male offspring resistant to behavioral despair, social and cognitive deficits in adulthood. Exercise reduced hippocampal IL-6, TNF-α, IFN-γ, and IL-17, and prefrontal IFN-γ and IL-17 in VPA-treated male offspring, whereas it reduced hippocampal TNF-α and IFN-γ in VPA-treated female offspring. This study suggests that adolescent exercise may prevents the development of stress-related symptoms, cognitive deficits, and neuroinflammation in prenatally VPA-exposed offspring mice.
Collapse
Affiliation(s)
- Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Masoumeh Hanani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Elhefnawei DM, Mahmoud AH, Kadry MO, AL-Mokaddem AK, Badawy MA, EL-Desouky MA. Calcium voltage-gated channel subunit alpha 1 C and glial fibrillary acidic protein signaling pathways as a selective biomarker in predicting the efficacy of liposomal loaded co-enzyme Q in the autistic rat model. Toxicol Rep 2022; 10:17-26. [PMID: 36561125 PMCID: PMC9763363 DOI: 10.1016/j.toxrep.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is an extreme neuropsychotic disturbance with both environmental and genetic origins. Sodium propionate (PPA) a metabolic bioproduct of gut microbiota is well-thought-out as a successful autism animal model. Nevertheless, Liposomal drug delivery system possess the advantagous of biocompatibility, targeting organs, ability to carry large drug payloads and skipping macrophages for this purpose the current study was carried out to investigate the hypothesis that Calcium Voltage-Gated channel subunit alpha 1 C (CACNA1C) and glial fibrillary acidic protein (GFAP) signaling pathways crosstalk with the efficacy of Co-enzyme Q10 (Co-Q10) and liposomal loaded Co-enzyme Q10 (L Co-Q10) in PPA mediated autistic rat model. Autism was conducted by buffered PPA (500 mg/Kg b.wt) daily for 5 consecutive days subsequently treatment via Co-Q10 in a dose of (10 mg/kg b.wt) and L Co-Q10 (2 mg/kg b.wt) for four weeks then the autistic model was followed for signs of autism at different time intervals of (one, two and four weeks). The control, PPA intoxicated, and treated groups were subjected to behavioral tests (Y-Maze and open field), antioxidant analysis, gene expression analysis, and histological examination at different time intervals of the study. The results revealed that Co-Q10 and L Co-Q10 significantly elevated antioxidative stress biomarkers, comprising superoxide dismutase (SOD), glutathione (GSH), and total antioxidant capacity (TAC). In addition, they significantly ameliorated the oxidative stress biomarker malondialdehyde (MDA). Meanwhile, they significantly downregulated GFAP and CACNA1C mRNA gene expressions, Co-Q10 and LCo-Q10 showed improvement in almost brain regions post PPA histopathological alterations, even better results were manifested via LCo-Q10 groups. These results showed the superiority of LCo-Q10 over Co-Q10 in competing autism. In conclusion: The administration of anti-inflammatory and antioxidant agents such as Co-Q10 and L Co-Q10 may represent a promising strategy to counteract pathological behaviors in ASD model via targeting organs, increasing retention time, and reducing side effects.
Collapse
Affiliation(s)
- Doaa M. Elhefnawei
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mai O. Kadry
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt,Corresponding author.
| | - Asmaa K. AL-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mohamed A. Badawy
- Department of Biochemistry, Faculty of Science, Cairo University, Egypt
| | | |
Collapse
|
6
|
The Role of Intraamygdaloid Oxytocin and D2 Dopamine Receptors in Reinforcement in the Valproate-Induced Autism Rat Model. Biomedicines 2022; 10:biomedicines10092309. [PMID: 36140411 PMCID: PMC9496370 DOI: 10.3390/biomedicines10092309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background: autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting around 1 out of 68 children and its incidence shows an increasing tendency. There is currently no effective treatment for ASD. In autism research, the valproate (VPA)-induced autism rodent model is widely accepted. Our previous results showed that intraamygdaloid oxytocin (OT) has anxiolytic effects on rats showing autistic signs under the VPA-induced autism model. Methods: rats were stereotaxically implanted with guide cannulae bilaterally and received intraamygdaloid microinjections. In the present study, we investigated the possible role of intraamygdaloid OT and D2 dopamine (DA) receptors on reinforcement using VPA-treated rats in a conditioned place preference test. OT and/or an OT receptor antagonist or a D2 DA antagonist were microinjected into the central nucleus of the amygdala (CeA). Results: valproate-treated rats receiving 10 ng OT spent significantly longer time in the treatment quadrant during the test session of the conditioned place preference test. Prior treatment with an OT receptor antagonist or with a D2 DA receptor antagonist blocked the positive reinforcing effects of OT. The OT receptor antagonist or D2 DA antagonist in themselves did not influence the time rats spent in the treatment quadrant. Conclusions: Our results show that OT has positive reinforcing effects under the VPA-induced autism rodent model and these effects are OT receptor-specific. Our data also suggest that the DAergic system plays a role in the positive reinforcing effects of OT because the D2 DA receptor antagonist can block these actions.
Collapse
|
7
|
Matsuo K, Shinoda Y, Abolhassani N, Nakabeppu Y, Fukunaga K. Transcriptome Analysis in Hippocampus of Rats Prenatally Exposed to Valproic Acid and Effects of Intranasal Treatment of Oxytocin. Front Psychiatry 2022; 13:859198. [PMID: 35432011 PMCID: PMC9005872 DOI: 10.3389/fpsyt.2022.859198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous disorder characterized by repetitive behaviors and social impairments, often accompanied by learning disabilities. It has been documented that the neuropeptide oxytocin (OXT) ameliorates core symptoms in patients with ASD. We recently reported that chronic administration of intranasal OXT reversed social and learning impairments in prenatally valproic acid (VPA)-exposed rats. However, the underlying molecular mechanisms remain unclear. Here, we explored molecular alterations in the hippocampus of rats and the effects of chronic administration of intranasal OXT (12 μg/kg/d). Microarray analyses revealed that prenatal VPA exposure altered gene expression, a part of which is suggested as a candidate in ASD and is involved in key features including memory, developmental processes, and epilepsy. OXT partly improved the expression of these genes, which were predicted to interact with those involved in social behaviors and hippocampal-dependent memory. Collectively, the present study documented molecular profiling in the hippocampus related to ASD and improvement by chronic treatment with OXT.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nona Abolhassani
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
László K, Kiss O, Vörös D, Mintál K, Ollmann T, Péczely L, Kovács A, Zagoracz O, Kertes E, Kállai V, László B, Hormay E, Berta B, Tóth A, Karádi Z, Lénárd L. Intraamygdaloid Oxytocin Reduces Anxiety in the Valproate-Induced Autism Rat Model. Biomedicines 2022; 10:405. [PMID: 35203614 PMCID: PMC8962302 DOI: 10.3390/biomedicines10020405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder affecting about 1.5% of children, and its prevalence is increasing. Anxiety is one of the most common comorbid signs of ASD. Despite the increasing prevalence, the pathophysiology of ASD is still poorly understood, and its proper treatment has not been defined yet. In order to develop new therapeutic approaches, the valproate- (VPA) induced rodent model of autism can be an appropriate tool. Oxytocin (OT), as a prosocial hormone, may ameliorate some symptoms of ASD. METHODS In the present study, we investigated the possible anxiolytic effect of intraamygdaloid OT on VPA-treated rats using the elevated plus maze test. RESULTS Our results show that male Wistar rats prenatally exposed to VPA spent significantly less time in the open arms of the elevated plus maze apparatus and performed significantly less head dips from the open arms. Bilateral OT microinjection into the central nucleus of the amygdala increased the time spent in the open arms and the number of head dips and reduced the anxiety to the healthy control level. An OT receptor antagonist blocked the anxiolytic effects of OT. The antagonist by itself did not influence the time rats spent in the open arms. CONCLUSIONS Our results show that intraamygdaloid OT has anxiolytic effects in autistic rats.
Collapse
Affiliation(s)
- Kristóf László
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Kitti Mintál
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Anita Kovács
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Olga Zagoracz
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Bettina László
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Edina Hormay
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Attila Tóth
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Karádi
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Center, Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, 7624 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, 7624 Pécs, Hungary; (O.K.); (D.V.); (K.M.); (T.O.); (L.P.); (A.K.); (O.Z.); (E.K.); (V.K.); (B.L.); (E.H.); (B.B.); (A.T.); (Z.K.); (L.L.)
- Neuroscience Center, University of Pécs, 7624 Pécs, Hungary
- Szentágothai Center, Molecular Endocrinology and Neurophysiology Research Group, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
9
|
Prenatal exposure to valproic acid and treatment with intranasal oxytocin have sex-specific effects on behavior in Long Evans rats. Behav Pharmacol 2021; 32:561-570. [PMID: 34494987 DOI: 10.1097/fbp.0000000000000650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social behaviors and communication. In rodents and humans, prenatal exposure to antiepileptic valproic acid is associated with an increased risk for autistic-like characteristics. One potential treatment is oxytocin, a prosocial neuropeptide that can be delivered intranasally. However, the sex-specific effects of valproic acid exposure and intranasal oxytocin treatment on behavior have not been fully explored. Pregnant Long Evans rats were administered valproic acid (500 mg/kg) or saline midday on gestational day 12, and after weaning, male and female pups were assigned to control (saline-saline), valproic acid-saline, or valproic acid-oxytocin groups. Oxytocin (0.8 IU/kg) or saline was delivered intranasally 30-60 min before tests for anxiety-like behaviors (elevated plus maze), social interactions (sociability) and sociosexual behaviors (partner preference, 50 kHz vocalizations and scent marking). Prenatal exposure to valproic acid resulted in sex-specific differences in behavior. When compared to controls, valproic acid males showed enhanced anxiety-like behaviors in adolescence and fewer scent marks in adulthood, while valproic acid females showed reduced sexual (partner) preference as adults. Intranasal oxytocin was anxiolytic for valproic acid males, but moderately anxiogenic for valproic acid females, and in both sexes it surprisingly impaired social interactions in the sociability test. Furthermore, intranasal oxytocin failed to improve sociosexual deficits in valproic acid rats. These findings highlight the importance of conducting preclinical studies in both sexes, and suggest that oxytocin may be an effective treatment in animal models with heightened anxiety-like behaviors.
Collapse
|