1
|
Cosio T, Valsecchi I, Gaziano R, Campione E, Botterel F. Glycation of Nail Proteins as a Risk Factor for Onychomycosis. Comment on Gupta et al. Diabetic Foot and Fungal Infections: Etiology and Management from a Dermatologic Perspective. J. Fungi 2024, 10, 577. J Fungi (Basel) 2025; 11:46. [PMID: 39852465 PMCID: PMC11766800 DOI: 10.3390/jof11010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
We read the review by Gupta et al [...].
Collapse
Affiliation(s)
- Terenzio Cosio
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
- DYNAMYC UR 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| | - Isabel Valsecchi
- DYNAMYC UR 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Françoise Botterel
- DYNAMYC UR 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| |
Collapse
|
2
|
Lazaro-Pacheco D, Taday PF, Paldánius PM. Exploring in-vivo infrared spectroscopy for nail-based diabetes screening. BIOMEDICAL OPTICS EXPRESS 2024; 15:1926-1942. [PMID: 38495687 PMCID: PMC10942683 DOI: 10.1364/boe.520102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Diabetes screening is traditionally complex, inefficient, and reliant on invasive sampling. This study evaluates near-infrared spectroscopy for non-invasive detection of glycated keratin in nails in vivo. Glycation of keratin, prevalent in tissues like nails and skin, is a key indicator of T2DM risk. In this study involving 200 participants (100 with diabetes, 100 without), NIR's efficacy was compared against a point-of-care HbA1c analyzer. Results showed a specificity of 92.9% in diabetes risk assessment. This study highlights the proposed NIR system potential as a simple, reliable tool for early diabetes screening and risk management in various healthcare settings.
Collapse
Affiliation(s)
- Daniela Lazaro-Pacheco
- University of Exeter, Engineering Department, Harrison Building, North Park Rd, Exeter EX44QF, United Kingdom
- Glyconics Limited, The Grosvenor, Basing View, Basingstoke RG214HG, United Kingdom
| | - Philip F Taday
- Glyconics Limited, The Grosvenor, Basing View, Basingstoke RG214HG, United Kingdom
| | - Päivi Maria Paldánius
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Mitu B, Trojan V, Halámková L. Sex Determination of Human Nails Based on Attenuated Total Reflection Fourier Transform Infrared Spectroscopy in Forensic Context. SENSORS (BASEL, SWITZERLAND) 2023; 23:9412. [PMID: 38067785 PMCID: PMC10708700 DOI: 10.3390/s23239412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
This study reports on the successful use of a machine learning approach using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy for the classification and prediction of a donor's sex from the fingernails of 63 individuals. A significant advantage of ATR FT-IR is its ability to provide a specific spectral signature for different samples based on their biochemical composition. The infrared spectrum reveals unique vibrational features of a sample based on the different absorption frequencies of the individual functional groups. This technique is fast, simple, non-destructive, and requires only small quantities of measured material with minimal-to-no sample preparation. However, advanced multivariate techniques are needed to elucidate multiplex spectral information and the small differences caused by donor characteristics. We developed an analytical method using ATR FT-IR spectroscopy advanced with machine learning (ML) based on 63 donors' fingernails (37 males, 26 females). The PLS-DA and ANN models were established, and their generalization abilities were compared. Here, the PLS scores from the PLS-DA model were used for an artificial neural network (ANN) to create a classification model. The proposed ANN model showed a greater potential for predictions, and it was validated against an independent dataset, which resulted in 92% correctly classified spectra. The results of the study are quite impressive, with 100% accuracy achieved in correctly classifying donors as either male or female at the donor level. Here, we underscore the potential of ML algorithms to leverage the selectivity of ATR FT-IR spectroscopy and produce predictions along with information about the level of certainty in a scientifically defensible manner. This proof-of-concept study demonstrates the value of ATR FT-IR spectroscopy as a forensic tool to discriminate between male and female donors, which is significant for forensic applications.
Collapse
Affiliation(s)
- Bilkis Mitu
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA;
| | - Václav Trojan
- Cannabis Facility, International Clinical Research Centre, St. Anne’s University Hospital, 602 00 Brno, Czech Republic;
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic
| | - Lenka Halámková
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
4
|
De Decker I, Notebaert M, Speeckaert MM, Claes KEY, Blondeel P, Van Aken E, Van Dorpe J, De Somer F, Heintz M, Monstrey S, Delanghe JR. Enzymatic Deglycation of Damaged Skin by Means of Combined Treatment of Fructosamine-3-Kinase and Fructosyl-Amino Acid Oxidase. Int J Mol Sci 2023; 24:ijms24108981. [PMID: 37240327 DOI: 10.3390/ijms24108981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The consensus in aging is that inflammation, cellular senescence, free radicals, and epigenetics are contributing factors. Skin glycation through advanced glycation end products (AGEs) has a crucial role in aging. Additionally, it has been suggested that their presence in scars leads to elasticity loss. This manuscript reports fructosamine-3-kinase (FN3K) and fructosyl-amino acid oxidase (FAOD) in counteracting skin glycation by AGEs. Skin specimens were obtained (n = 19) and incubated with glycolaldehyde (GA) for AGE induction. FN3K and FAOD were used as monotherapy or combination therapy. Negative and positive controls were treated with phosphate-buffered saline and aminoguanidine, respectively. Autofluorescence (AF) was used to measure deglycation. An excised hypertrophic scar tissue (HTS) (n = 1) was treated. Changes in chemical bonds and elasticity were evaluated using mid-infrared spectroscopy (MIR) and skin elongation, respectively. Specimens treated with FN3K and FAOD in monotherapy achieved an average decrease of 31% and 33% in AF values, respectively. When treatments were combined, a decrease of 43% was achieved. The positive control decreased by 28%, whilst the negative control showed no difference. Elongation testing of HTS showed a significant elasticity improvement after FN3K treatment. ATR-IR spectra demonstrated differences in chemical bounds pre- versus post-treatment. FN3K and FAOD can achieve deglycation and the effects are most optimal when combined in one treatment.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Margo Notebaert
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Elisabeth Van Aken
- Department of Head and Skin, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Filip De Somer
- Department of Cardiac Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Margaux Heintz
- Faculty of Medicine and Health Sciences, Ghent University, Sint-Pietersnieuwstraat 33, 9000 Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
5
|
A Potential Role for Fructosamine-3-Kinase in Cataract Treatment. Int J Mol Sci 2021; 22:ijms22083841. [PMID: 33917258 PMCID: PMC8068021 DOI: 10.3390/ijms22083841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/01/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Cataracts are the major cause of blindness worldwide, largely resulting from aging and diabetes mellitus. Advanced glycation end products (AGEs) have been identified as major contributors in cataract formation because they alter lens protein structure and stability and induce covalent cross-linking, aggregation, and insolubilization of lens crystallins. We investigated the potential of the deglycating enzyme fructosamine-3-kinase (FN3K) in the disruption of AGEs in cataractous lenses. Macroscopic changes of equine lenses were evaluated after ex vivo intravitreal FN3K injection. The mechanical properties of an equine lens pair were evaluated after treatment with saline and FN3K. AGE-type autofluorescence (AF) was measured to assess the time-dependent effects of FN3K on glycolaldehyde-induced AGE-modified porcine lens fragments and to evaluate its actions on intact lenses after in vivo intravitreal FN3K injection of murine eyes. A potential immune response after injection was evaluated by analysis of IL-2, TNFα, and IFNγ using an ELISA kit. Dose- and time-dependent AF kinetics were analyzed on pooled human lens fragments. Furthermore, AF measurements and a time-lapse of macroscopic changes were performed on intact cataractous human eye lenses after incubation with an FN3K solution. At last, AF measurements were performed on cataractous human eyes after crossover topical treatment with either saline- or FN3K-containing drops. While the lenses of the equine FN3K-treated eyes appeared to be clear, the saline-treated lenses had a yellowish-brown color. Following FN3K treatment, color restoration could be observed within 30 min. The extension rate of the equine FN3K-treated lens was more than twice the extension rate of the saline-treated lens. FN3K treatment induced significant time-dependent decreases in AGE-related AF values in the AGE-modified porcine lens fragments. Furthermore, in vivo intravitreal FN3K injection of murine eyes significantly reduced AF values of the lenses. Treatment did not provoke a systemic immune response in mice. AF kinetics of FN3K-treated cataractous human lens suspensions revealed dose- and time-dependent decreases. Incubation of cataractous human eye lenses with FN3K resulted in a macroscopic lighter color of the cortex and a decrease in AF values. At last, crossover topical treatment of intact human eyes revealed a decrease in AF values during FN3K treatment, while showing no notable changes with saline. Our study suggests, for the first time, a potential additional role of FN3K as an alternative treatment for AGE-related cataracts.
Collapse
|