1
|
Camacho-Alonso F, Águila OGD, Ferrer-Díaz P, Peñarrocha-Oltra D, Guerrero-Sánchez Y, Bernabeu-Mira JC. Cyanoacrylate versus Collagen Membrane as a Sealing for Alveolar Ridge Preservation: A Randomized Clinical Trial. J Funct Biomater 2024; 15:279. [PMID: 39452578 PMCID: PMC11508997 DOI: 10.3390/jfb15100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/28/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
This study involved a randomized clinical trial that included 140 patients. Alveolar ridge preservation was performed with xenografts. Sealing in the control group consisted of a collagen membrane versus cyanoacrylate in the test group. The dental implants were placed immediately after extraction. The variables were evaluated at 3, 12, and 18 months of follow-up. Pearson's chi-squared test was used for qualitative variables and the Student t-test for related samples was used for quantitative variables. The change in buccolingual alveolar bone width was significantly greater in the CMX group than in the CX group after three months (p < 0.005). However, significance was not reached at the other follow-up timepoints (p > 0.005). CAL showed significantly greater values in the CMX group than in the CX group (p < 0.005), and MBL proved greater in the CMX group than in the CX group, with p < 0.001. Five membrane exposures were recorded in the CMX group. Cyanoacrylate as a sealing method for alveolar ridge preservation seems to afford better clinical and radiological results than collagen membrane.
Collapse
Affiliation(s)
| | | | - Paula Ferrer-Díaz
- Private Oral Surgery and Medical Practice, 30100 Murcia, Spain; (O.G.-D.Á.); (P.F.-D.)
| | - David Peñarrocha-Oltra
- Oral Surgery Unit, Department of Stomatology, University of Valencia, 46010 Valencia, Spain; (D.P.-O.); (J.C.B.-M.)
| | | | - Juan Carlos Bernabeu-Mira
- Oral Surgery Unit, Department of Stomatology, University of Valencia, 46010 Valencia, Spain; (D.P.-O.); (J.C.B.-M.)
| |
Collapse
|
2
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q, Zhang D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front Bioeng Biotechnol 2022; 10:921576. [PMID: 35814003 PMCID: PMC9257033 DOI: 10.3389/fbioe.2022.921576] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Guided bone regeneration (GBR) is a widely used technique for alveolar bone augmentation. Among all the principal elements, barrier membrane is recognized as the key to the success of GBR. Ideal barrier membrane should have satisfactory biological and mechanical properties. According to their composition, barrier membranes can be divided into polymer membranes and non-polymer membranes. Polymer barrier membranes have become a research hotspot not only because they can control the physical and chemical characteristics of the membranes by regulating the synthesis conditions but also because their prices are relatively low. Still now the bone augment effect of barrier membrane used in clinical practice is more dependent on the body’s own growth potential and the osteogenic effect is difficult to predict. Therefore, scholars have carried out many researches to explore new barrier membranes in order to improve the success rate of bone enhancement. The aim of this study is to collect and compare recent studies on optimizing barrier membranes. The characteristics and research progress of different types of barrier membranes were also discussed in detail.
Collapse
Affiliation(s)
- Ze Yang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Wu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| |
Collapse
|
4
|
Evaluation of the Efficacy of Mineralized Dentin Graft in the Treatment of Intraosseous Defects: An Experimental In Vivo Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010103. [PMID: 35056411 PMCID: PMC8777758 DOI: 10.3390/medicina58010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Dentin grafts have osteoinductive and osteoconductive properties and are considered as an alternative to autogenous graft. This study evaluates the efficacy of autogenous mineralized dentin graft (AMDG) alone or with xenograft and compares it with those of various graft materials used in the treatment of intraosseous bone defects. Materials and Methods: The third incisor teeth of six sheep (2–3 years old) were extracted and AMDG was obtained. Six defects were prepared on each tibia of these six sheep: empty defect (group E); autogenous graft (group A), dentin graft (group D), xenograft (group X), autogenous + xenograft (group A + X) and dentin + xenograft (group D + X). Three sheep in each group were sacrificed in the post-operative 3rd and 6th week and the histologic analyses were performed. Results: The D and D + X groups showed histological features similar to the other groups in the 3rd and 6th weeks. No statistically significant difference was found regarding the rates of new bone formation between the D and D + X groups (p = 1.0) and the other groups at both time intervals (p > 0.05). Conclusions: Similar results observed in this study between groups A, D, X, A + X and D + X demonstrate that AMDG can be successfully used in the treatment of intraosseous bone defects. Further experimental and clinical studies are needed to be able to evaluate the effectiveness of dentin grafts in different types of indications.
Collapse
|