1
|
Putra ON, Musfiroh I, Elisa S, Musa M, Ikram EHK, Chaidir C, Muchtaridi M. Sodium Starch Glycolate (SSG) from Sago Starch ( Metroxylon sago) as a Superdisintegrant: Synthesis and Characterization. Molecules 2023; 29:151. [PMID: 38202734 PMCID: PMC10779860 DOI: 10.3390/molecules29010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The characteristics of sago starch exhibit remarkable resemblances to those of cassava, potato, and maize starches. This review intends to discuss and summarize the synthesis and characterization of sodium starch glycolate (SSG) from sago starch as a superdisintegrant from published journals using keywords in PubMed, Scopus, and ScienceDirect databases by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020). There are many methods for synthesizing sodium starch glycolate (SSG). Other methods may include the aqueous, extrusion, organic solvent slurry, and dry methods. Sago starch is a novel form of high-yield starch with significant development potential. After cross-linking, the phosphorus content of sago starch increases by approximately 0.3 mg/g, corresponding to approximately one phosphate ester group per 500 anhydroglucose units. The degree of substitution (DS) of sodium starch glycolate (SSG) from sago ranges from 0.25 to 0.30; in drug formulations, sodium starch glycolate (SSG) from sago ranges from 2% to 8% w/w. Higher levels of sodium starch glycolate (SSG) (2% and 4% w/w) resulted in shorter disintegration times (within 1 min). Sago starch is more swellable and less enzymatically digestible than pea and corn starch. These investigations demonstrate that sago starch is a novel form of high-yield starch with tremendous potential for novel development as superdisintegrant tablets and capsules.
Collapse
Affiliation(s)
- Okta Nama Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
| | - Sarah Elisa
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Musa Musa
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Emmy Hainida Khairul Ikram
- Centre for Dietetics Studies and Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia;
| | - Chaidir Chaidir
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Cibinong 16912, West Java, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jl. Soekarno KM-21, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
2
|
Bello II, Omigbodun A, Morhason-Bello I. Common salt aggravated pathology of testosterone-induced benign prostatic hyperplasia in adult male Wistar rat. BMC Urol 2023; 23:207. [PMID: 38082261 PMCID: PMC10712029 DOI: 10.1186/s12894-023-01371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a major health concern associated with lower urinary tract symptoms and sexual dysfunction in men. Recurrent inflammation, decreased apoptotic rate and oxidative stress are some of the theories that explain the pathophysiology of BPH. Common salt, a food additive, is known to cause systemic inflammation and redox imbalance, and may serve as a potential risk factor for BPH development or progression. This study examined the effect of common salt intake on the pathology of testosterone-induced BPH. METHODS Forty male Wistar rats were randomly divided into four equal groups of 10: a control and three salt diet groups-low-salt diet (LSD), standard-salt diet (SSD) and high-salt diet (HSD). The rats were castrated, allowed to recuperate and placed on salt-free diet (control), 0.25% salt diet (LSD), 0.5% salt diet (SSD) and 1.25% salt diet (HSD) for 60 days ad libitum. On day 33, BPH was induced in all the rats with daily injections of testosterone propionate-Testost® (3 mg/kg body weight) for 28 days. The rats had overnight fast (12 h) on day 60 and were euthanized the following day in order to collect blood and prostate samples for biochemical, molecular and immunohistochemistry (IHC) analyses. Mean ± SD values were calculated for each group and compared for significant difference with ANOVA followed by post hoc test (Tukey HSD) at p < 0.05. RESULTS This study recorded a substantially higher level of IL-6, IL-8 and COX-2 in salt diet groups and moderate IHC staining of COX-2 in HSD group. The prostatic level of IL-17, IL-1β, PGE2, relative prostate weight and serum PSA levels were not statistically different. The concentrations of IGF-1, TGF-β were similar in all the groups but there were multiple fold increase in Bcl-2 expression in salt diet groups-LSD (13.2), SSD (9.5) and HSD (7.9) and multiple fold decrease in VEGF expression in LSD (-6.3), SSD (-5.1) and HSD (-14.1) compared to control. Activity of superoxide dismutase (SOD) and concentration of nitric oxide rose in LSD and SSD groups, and SSD and HSD groups respectively. Activities of glutathione peroxidase and catalase, and concentration of NADPH and hydrogen peroxide were not significantly different. IHC showed positive immunostaining for iNOS expression in all the groups while histopathology revealed moderate to severe prostatic hyperplasia in salt diet groups. CONCLUSIONS These findings suggest that low, standard and high salt diets aggravated the pathology of testosterone-induced BPH in Wistar rats by promoting inflammation, oxidative stress, while suppressing apoptosis and angiogenesis.
Collapse
Affiliation(s)
- Idris Idowu Bello
- Department of Reproductive Health Sciences, Pan African University Life and Earth Sciences Institute (including Health and Agriculture), PAULESI, University of Ibadan, Ibadan, Nigeria.
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora, Oyo State, Nigeria.
| | - Akinyinka Omigbodun
- Department of Obstetrics and Gynaecology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Imran Morhason-Bello
- Department of Obstetrics and Gynaecology, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Skłodowski K, Suprewicz Ł, Chmielewska-Deptuła SJ, Kaliniak S, Okła S, Zakrzewska M, Minarowski Ł, Mróz R, Daniluk T, Savage PB, Fiedoruk K, Bucki R. Ceragenins exhibit bactericidal properties that are independent of the ionic strength in the environment mimicking cystic fibrosis sputum. Front Microbiol 2023; 14:1290952. [PMID: 38045035 PMCID: PMC10693459 DOI: 10.3389/fmicb.2023.1290952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
The purpose of the work was to investigate the impact of sodium chloride (NaCl) on the antimicrobial efficacy of ceragenins (CSAs) and antimicrobial peptides (AMPs) against bacterial and fungal pathogens associated with cystic fibrosis (CF) lung infections. CF-associated bacterial (Pseudomonas aeruginosa, Ochrobactrum spp., and Staphylococcus aureus), and fungal pathogens (Candida albicans, and Candida tropicalis) were used as target organisms for ceragenins (CSA-13 and CSA-131) and AMPs (LL-37 and omiganan). Susceptibility to the tested compounds was assessed using minimal inhibitory concentrations (MICs) and bactericidal concentrations (MBCs), as well as by colony counting assays in CF sputum samples supplemented with various concentrations of NaCl. Our results demonstrated that ceragenins exhibit potent antimicrobial activity in CF sputum regardless of the NaCl concentration when compared to LL-37 and omiganan. Given the broad-spectrum antimicrobial activity of ceragenins in the microenvironments mimicking the airways of CF patients, ceragenins might be promising agents in managing CF disease.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | | | | | - Sławomir Okła
- Holy Cross Cancer Center, Kielce, Poland
- Institute of Health Science, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Łukasz Minarowski
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Robert Mróz
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, United States
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
4
|
Stamatiou I, Papachristou S, Papanas N. Diabetes Mellitus and Bell's Palsy. Curr Diabetes Rev 2023; 19:46-49. [PMID: 35260056 DOI: 10.2174/1573399818666220308161023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The aim of the present brief review was to discuss Bell's palsy (BP) in diabetes mellitus (DM). The risk of BP is increased in DM. DM subjects with BP are more prone to severe facial nerve degeneration. Further characteristics of BP in DM include a) infrequent taste impairment; b) more frequent and more marked facial nerve subclinical electrophysiological impairment; c) more frequent Blink reflex impairment; d) potentially concurrent distal symmetrical sensorimotor polyneuropathy; e) more frequent alternating BP with recurrent episodes affecting different sides of the face. Diagnosis of BP rests on clinical examination, along with facial nerve electromyographic and electroneurographic evaluation. Management of BP in DM includes physical therapy, corticosteroids, and antiviral agents. Finally, acupuncture, low-level laser therapy, lipoprostaglandin E1, and stellate ganglion block are new modalities with initially promising results.
Collapse
Affiliation(s)
- Iliana Stamatiou
- Second Department of Internal Medicine, Diabetes Centre, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stella Papachristou
- Second Department of Internal Medicine, Diabetes Centre, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Papanas
- Second Department of Internal Medicine, Diabetes Centre, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
5
|
Brown RB. Hypertension, Anxiety and Obstructive Sleep Apnea in Cardiovascular Disease and COVID-19: Mediation by Dietary Salt. Diseases 2022; 10:diseases10040089. [PMID: 36278588 PMCID: PMC9590013 DOI: 10.3390/diseases10040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
This perspective paper used a grounded theory method to synthesize evidence proposing that sodium toxicity from excessive dietary salt intake is a potential common pathophysiological mechanism that mediates the association of hypertension, obstructive sleep apnea, and anxiety with cardiovascular disease and COVID-19. Increased anxiety in these conditions may be linked to a high-salt diet through stimulation of the sympathetic nervous system, which increases blood pressure while releasing catecholamines, causing a "fight or flight" response. A rostral shift of fluid overload from the lower to the upper body occurs in obstructive sleep apnea associated with COVID-19 and cardiovascular disease, and may be related to sodium and fluid retention triggered by hypertonic dehydration. Chronic activation of the renin-angiotensin-aldosterone system responds to salt-induced dehydration by increasing reabsorption of sodium and fluid, potentially exacerbating fluid overload. Anxiety may also be related to angiotensin II that stimulates the sympathetic nervous system to release catecholamines. More research is needed to investigate these proposed interrelated mechanisms mediated by dietary salt. Furthermore, dietary interventions should use a whole-food plant-based diet that eliminates foods processed with salt to test the effect of very low sodium intake levels on hypertension, anxiety, and obstructive sleep apnea in cardiovascular disease and COVID-19.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
6
|
Brown RB. Non-Specific Low Back Pain, Dietary Salt Intake, and Posterior Lumbar Subcutaneous Edema. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159158. [PMID: 35954516 PMCID: PMC9368517 DOI: 10.3390/ijerph19159158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022]
Abstract
Low back pain is the world’s leading disability, but the etiology of the majority of low back pain is non-specific with no known cause. Moreover, overuse of opioids to treat low back pain is a widespread problem. This paper proposes that non-specific low back pain may be associated with excessive intake of dietary salt, potentially mediated by posterior lumbar subcutaneous edema. In addition to pain, symptoms of edema include swelling, tightness, and stiff joints, which are common complaints of people with low back pain, along with restricted lumbar range of motion and impaired mobility. Many global populations consume excess sodium chloride, which can lead to fluid overload in hypervolemia, and cause swelling and temporary weight gain associated with low back pain. Numerous conditions comorbid with low back pain are also potentially mediated by excessive salt intake, including migraine headache, hypertension, cardiovascular disease, venous thromboembolism, liver disease, respiratory disorders, chronic kidney disease, pregnancy complications, and multiple sclerosis. Novel approaches to identify and prevent the cause of non-specific low back pain have potential to reduce disability worldwide by reducing low back pain prevalence. More research is needed to confirm the involvement of dietary salt and posterior lumbar subcutaneous edema in non-specific low back pain.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|