1
|
Agarwal G, Moes K, Schmidt CE. Development and in vitro evaluation of biomimetic injectable hydrogels from decellularized human nerves for central nervous system regeneration. Mater Today Bio 2025; 31:101483. [PMID: 39896276 PMCID: PMC11787433 DOI: 10.1016/j.mtbio.2025.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Injuries to the central nervous system (CNS) often lead to persistent inflammation and limited regeneration. This study developed a clinically relevant injectable hydrogel derived from decellularized human peripheral nerves, with mechanical properties biomimicking native CNS tissue. Using a modified Hudson method, human sciatic nerves were decellularized, effectively removing immunogenic cellular debris while retaining the extracellular matrix. Two delipidation solvents, dichloromethane: ethanol (2:1 v/v) and n-hexane: isopropanol (3:1 v/v), were evaluated, with the former achieving optimal lipid removal and better digestion. The resulting solution was crosslinked with genipin, forming an injectable hydrogel (iHPN) that gelled within 12 min at 37 °C and exhibited mechanical stiffness of approximately 400 Pa. Human astrocytes, human microglial cell clone 3 (HMC3), and mouse RAW 264.7 macrophages were cultured individually within iHPN, with lipopolysaccharide (LPS) added to mimic CNS inflammation following injury. Compared to LPS-activated cells on tissue culture plates (TCP), astrocytes within iHPN maintained a quiescent state, as evidenced by reduced GFAP expression and IL-1β secretion. RAW 264.7 and HMC3 cells in iHPN displayed an anti-inflammatory phenotype, as shown by increased CD206 and decreased CD86/CD68 expression, along with higher IL-4 and lower TNF-α/IL-1β secretion. Human SH-SY5Y neuroblastoma cells exhibited higher viability and improved neuronal differentiation in iHPN compared to TCP. Human brain neurons had higher neuronal differentiation within iHPN compared to TCP or collagen hydrogels. Overall, iHPN is a novel injectable hydrogel that has potential for minimally invasive CNS applications, such as a carrier for cell or drug delivery and/or a biomaterial to support axonal growth.
Collapse
Affiliation(s)
- Gopal Agarwal
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Kennedy Moes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
2
|
Bansal S, Wang B. A critical factor in reactive oxygen species (ROS) studies: the need to understand the chemistry of the solvent used: the case of DMSO. Chem Sci 2024; 15:d4sc05038j. [PMID: 39397818 PMCID: PMC11469295 DOI: 10.1039/d4sc05038j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Reactive oxygen species (ROS) play critical roles in normal physiological processes including cellular signaling and immune responses. Various pathological conditions including infections of various types, inflammation, cancer, and respiratory conditions are associated with elevated levels of ROS. Therefore, there is widespread interest in understanding ROS concentrations under various pathophysiological conditions for diagnostic and therapeutic applications including ROS-triggered drug delivery. However, in determining ROS concentration, there are major concerns of inappropriate use of various methods that lead to erroneous results; this has prompted the publication of a consensus paper in Nature Metabolism by a group of ROS experts stating "Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims." Along this line, we have identified an overlooked factor, which can significantly skew the results and results interpretation: the organic co-solvent. DMSO is one of the most widely used organic co-solvents to dissolve a reagent for bioassays. Herein, we describe the rapid oxidation of DMSO by hypochlorite and how this oxidation impacts results of ROS determination in buffer, cell culture media, cell culture, and cell lysates. We hope to use this one example to draw attention to the convoluted roles that DMSO and possibly other organic co-solvents can play and skew experimental results. We also hope to stimulate additional studies to bring more rigor to studying ROS concentration and biology.
Collapse
Affiliation(s)
- Shubham Bansal
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30301 USA +1-404-413-5544
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University Atlanta Georgia 30301 USA +1-404-413-5544
| |
Collapse
|
3
|
Yuan H, Jia L, Xie X, Li Q, Peng Y, Ma Q, Guo T, Meng T. Microbially Inspired Calcium Carbonate Precipitation Pathway Integrated Polyelectrolyte Capsules (MICPC) for Biomolecules Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306877. [PMID: 38415820 DOI: 10.1002/smll.202306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Complexation between oppositely charged polyelectrolytes offers a facile single-step strategy for assembling functional micro-nano carriers for efficient drug and vaccine delivery. However, the stability of the delivery system within the physiological environment is compromised due to the swelling of the polyelectrolyte complex, driven by the charge shielding effect, and consequently leads to uncontrollable burst release, thereby limiting its potential applications. In a pioneering approach, cellular pathway-inspired calcium carbonate precipitation pathways are developed that are integrated into polyelectrolyte capsules (MICPC). These innovative capsules are fabricated at the interface of all-aqueous microfluidic droplets, resulting in a precisely controllable and sustained release profile in physiological conditions. Unlike single-step polyelectrolyte assembly capsules which always perform rapid burst release, the MICPC exhibits a sustainable and tunable release pattern, releasing biomolecules at an average rate of 3-10% per day. Remarkably, the degree of control over MICPC's release kinetics can be finely tuned by adjusting the quantity of synthesized calcium carbonate particles within the polyelectrolyte complex. This groundbreaking work not only deepens the insights into polyelectrolyte complexation but also significantly enhances the overall stability of these complexes, opening up new avenues for expanding the range of applications involving polyelectrolyte complex-related materials.
Collapse
Affiliation(s)
- Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lufan Jia
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xin Xie
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qinyuan Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yali Peng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071, P. R. China
| | - Ting Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tao Meng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
4
|
Collery P, Desmaële D, Harikrishnan A, Veena V. Remarkable Effects of a Rhenium(I)-diselenoether Drug on the Production of Cathepsins B and S by Macrophages and their Polarizations. Curr Pharm Des 2023; 29:2396-2407. [PMID: 37859327 DOI: 10.2174/0113816128268963231013074433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND/OBJECTIVE Tumor-associated macrophages (TAMs) produce an excessive amount of cysteine proteases, and we aimed to study the effects of anticancer rhenium(I)-diselenoether (Re-diSe) on the production of cathepsins B and S by macrophages. We investigated the effect of Re-diSe on lipopolysaccharides (LPS) induced M1 macrophages, or by interleukin 6 (IL-6) induced M2 macrophages. METHODS Non-stimulated or prestimulated murine Raw 264 or human THP-1 macrophages were exposed to increasing concentrations of the drug (5, 10, 20, 50 and 100 μM) and viability was assayed by the MTT assay. The amount of cysteine proteases was evaluated by ELISA tests, the number of M1 and M2 macrophages by the expression of CD80 or CD206 biomarkers. The binding of Re-diSe with GSH as a model thiol-containing protein was studied by mass spectrometry. RESULTS A dose-dependent decrease in cathepsins B and S was observed in M1 macrophages. There was no effect in non-stimulated cells. The drug induced a dramatic dose-dependent increase in M1 expression in both cells, significantly decreased the M2 expression in Raw 264 and had no effect in non-stimulated macrophages. The binding of the Re atom with the thiols was clearly demonstrated. CONCLUSION The increase in the number of M1 and a decrease in M2 macrophages treated by Re-diSe could be related to the decrease in cysteine proteases upon binding of their thiol residues with the Re atom.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaële
- Department of Chemistry, Institut Galien, Université Paris-Saclay, 91400 Orsay, France
| | - Adhikesavan Harikrishnan
- Department of Chemistry, School of Arts and Science, Vinayaka Mission Research Foundation- AV Campus, Chennai 560064, India
| | - Vijay Veena
- School of Allied Healthcare and Sciences, Jain University, Bangalore 560066, India
| |
Collapse
|
5
|
Selvam P, Cheng CM, Dahms HU, Ponnusamy VK, Sun YY. AhR Mediated Activation of Pro-Inflammatory Response of RAW 264.7 Cells Modulate the Epithelial-Mesenchymal Transition. TOXICS 2022; 10:toxics10110642. [PMID: 36355934 PMCID: PMC9696907 DOI: 10.3390/toxics10110642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 05/31/2023]
Abstract
Pulmonary fibrosis, a chronic lung disease caused by progressive deterioration of lung tissue, is generated by several factors including genetic and environmental ones. In response to long-term exposure to environmental stimuli, aberrant tissue repair and epithelial cell-to- mesenchymal cell transition (EMT) trigger the subsequent progression of pulmonary fibrotic diseases. The Aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by ligands providing lung dysfunction when activated by environmental toxins, such as polycyclic aromatic hydrocarbons. Our previous study demonstrated that AhR mediates α-SMA expression by directly binding to the α-SMA (fibroblast differentiation marker) promoter, suggesting the role of AhR in mediating fibrogenic progression. Here we follow the hypothesis that macrophage infiltrated microenvironments may trigger inflammation and subsequent fibrosis. We studied the expression of cytokines in RAW 264.7 cells by AhR activation through an ELISA assay. To investigate molecular events, migration, western blotting and zymography assays were carried out. We found that AhR agonists such as TCDD, IP and FICZ, promote the migration and induce inflammatory mediators such as TNF-α and G-CSF, MIP-1α, MIP-1β and MIP-2. These cytokines arbitrate EMT marker expression such as E-cadherin, fibronectin, and vimentin in pulmonary epithelial cells. Expression of proteins of MMPs in mouse macrophages was determined by zymography, showing the caseinolytic activity of MMP-1 and the gelatinolytic action of MMP-2 and MMP-9. Taken together, the present study showed that AhR activated macrophages create an inflammatory microenvironment which favours the fibrotic progression of pulmonary epithelial cells. Such production of inflammatory factors was accomplished by affecting the Wnt/β-catenin signalling pathway, thereby creating a microenvironment which enhances the epithelial-mesenchymal transition, leading to fibrosis of the lung.
Collapse
Affiliation(s)
- Padhmavathi Selvam
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University, Kaohsiung 804, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Yu-Yo Sun
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| |
Collapse
|
6
|
Yu B, Liang J, Li X, Liu L, Yao J, Chen X, Chen R. Renieramycin T Inhibits Melanoma B16F10 Cell Metastasis and Invasion via Regulating Nrf2 and STAT3 Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165337. [PMID: 36014573 PMCID: PMC9413012 DOI: 10.3390/molecules27165337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
As one of marine tetrahydroisoquinoline alkaloids, renieramycin T plays a significant role in inhibiting tumor metastasis and invasion. However, the effect of renieramycin T on inflammation-related tumor metastasis and invasion is still unknown, and its mechanisms remain unclear. Here we established an inflammation-related tumor model by using the supernatant of RAW264.7 cells to simulate B16F10 mouse melanoma cells. The results indicate that renieramycin T suppressed RAW264.7 cell supernatant-reduced B16F10 cell adhesion to a fibronectin-coated substrate, migration, and invasion through the matrigel in a concentration-dependent manner. Moreover, Western blot results reveal that renieramycin T attenuated the phosphorylation of STAT3 and down-regulated the expression of Nrf2. Together, the above findings suggest a model of renieramycin T in suppressing B16F10 cancer cell migration and invasion. It may serve as a promising drug for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Baohua Yu
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining 272067, China
| | - Jing Liang
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining 272067, China
| | - Xiufang Li
- College of Pharmacy, Heze University, Heze 274015, China
| | - Li Liu
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining 272067, China
| | - Jing Yao
- College of Basic Medicine, Jining Medical University, Jining 272067, China
| | - Xiaochuan Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Correspondence: (X.C.); (R.C.); Tel.: +86-28-8541-2095 (X.C.); +86-53-7361-6216 (R.C.)
| | - Ruijiao Chen
- Department of Pediatric Surgery, Affiliated Hospital of Jining Medical University, Jining 272067, China
- College of Basic Medicine, Jining Medical University, Jining 272067, China
- Correspondence: (X.C.); (R.C.); Tel.: +86-28-8541-2095 (X.C.); +86-53-7361-6216 (R.C.)
| |
Collapse
|
7
|
Tanabe S, O’Brien J, Tollefsen KE, Kim Y, Chauhan V, Yauk C, Huliganga E, Rudel RA, Kay JE, Helm JS, Beaton D, Filipovska J, Sovadinova I, Garcia-Reyero N, Mally A, Poulsen SS, Delrue N, Fritsche E, Luettich K, La Rocca C, Yepiskoposyan H, Klose J, Danielsen PH, Esterhuizen M, Jacobsen NR, Vogel U, Gant TW, Choi I, FitzGerald R. Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. FRONTIERS IN TOXICOLOGY 2022; 4:887135. [PMID: 35875696 PMCID: PMC9298159 DOI: 10.3389/ftox.2022.887135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Jason O’Brien
- Wildlife Toxicology Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Youngjun Kim
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Natalia Garcia-Reyero
- U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS, United States
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nathalie Delrue
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Ellen Fritsche
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Cinzia La Rocca
- Center for Gender-specific Medicine, Italian National Institute of Health, Rome, Italy
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Jördis Klose
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Maranda Esterhuizen
- University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Lahti, Finland, and Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Timothy W. Gant
- UK Health Security Agency, Public Health England, London, United Kingdom
| | - Ian Choi
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | |
Collapse
|
8
|
Kou Y, Li Z, Sun Q, Yang S, Wang Y, Hu C, Gu H, Wang H, Xu H, Li Y, Kou Y, Han B. Prognostic value and predictive biomarkers of phenotypes of tumor-associated macrophages in colorectal cancer. Scand J Immunol 2021; 95:e13137. [PMID: 34964155 PMCID: PMC9286461 DOI: 10.1111/sji.13137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 12/26/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND The roles of different subtypes of tumor-associated macrophages (TAMs) in predicting the prognosis of colorectal cancer (CRC) remain controversial. In this study, different subtypes of TAMs were investigated as prognostic and predictive biomarkers for CRC. METHODS Expressions of CD68, CD86 and CD163 were investigated by immunohistochemistry (IHC) and immunofluorescence (IF), and the correlation between the expression of CD86 and CD163 was calculated in colorectal cancer tissues from 64 CRC patients. RESULTS The results showed that high expressions of CD86+ and CD68+ CD86+ TAMs as well as low expression of CD163+ and CD68+ CD163+ TAMs were significantly associated with favorable overall survival (OS). The level of CD86 protein expression showed a negative correlation with CD163 protein expression. In addition, CD86 protein expression remarkably negative correlated with tumor differentiation and tumor node metastasis (TNM) stage, while CD163 protein expression significantly positive correlated with tumor differentiation and tumor size. As an independent risk factor, high expression of CD86 TAMs had prominently favorable prognostic efficacy while high expression of CD68+ CD163+ TAMs had significantly poor prognostic efficacy. CONCLUSIONS These results indicate that CD86+ and CD68+ CD163+ TAMs as prognostic and predictive biomarkers for CRC.
Collapse
Affiliation(s)
- Yu Kou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Zhuoqun Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Qidi Sun
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Shengnan Yang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Yunshuai Wang
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| | - Chen Hu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Huijie Gu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China
| | - Huangjian Wang
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| | - Hairong Xu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Yan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Yu Kou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medcine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, 225000, Jiangsu, China.,Department of Traditional Chinese Medicine Affiliated Hospital, Yangzhou University, 225000, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225000, Jiangsu, China
| | - Baowei Han
- Department of General Surgery, Luoyang Central Hospital Affiliated of Zhengzhou University, 471000, Henan, China
| |
Collapse
|
9
|
Ouro A. Cancer Biology Analysis-Tackled from Different Points of View. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:937. [PMID: 34577860 PMCID: PMC8468288 DOI: 10.3390/medicina57090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
In the last few decades, great advances have been made in the detection and treatment of cancer, thus increasing the survival rate [...].
Collapse
Affiliation(s)
- Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|