1
|
Perron U, Grassi E, Chatzipli A, Viviani M, Karakoc E, Trastulla L, Brochier LM, Isella C, Zanella ER, Klett H, Molineris I, Schueler J, Esteller M, Medico E, Conte N, McDermott U, Trusolino L, Bertotti A, Iorio F. Integrative ensemble modelling of cetuximab sensitivity in colorectal cancer patient-derived xenografts. Nat Commun 2024; 15:9139. [PMID: 39528460 PMCID: PMC11555063 DOI: 10.1038/s41467-024-53163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Patient-derived xenografts (PDXs) are tumour fragments engrafted into mice for preclinical studies. PDXs offer clear advantages over simpler in vitro cancer models - such as cancer cell lines (CCLs) and organoids - in terms of structural complexity, heterogeneity, and stromal interactions. Here, we characterise 231 colorectal cancer PDXs at the genomic, transcriptomic, and epigenetic levels, along with their response to cetuximab, an EGFR inhibitor used clinically for metastatic colorectal cancer. After evaluating the PDXs' quality, stability, and molecular concordance with publicly available patient cohorts, we present results from training, interpreting, and validating the integrative ensemble classifier CeSta. This model takes in input the PDXs' multi-omic characterisation and predicts their sensitivity to cetuximab treatment, achieving an area under the receiver operating characteristics curve > 0.88. Our study demonstrates that large PDX collections can be leveraged to train accurate, interpretable drug sensitivity models that: (1) better capture patient-derived therapeutic biomarkers compared to models trained on CCL data, (2) can be robustly validated across independent PDX cohorts, and (3) could contribute to the development of future therapeutic biomarkers.
Collapse
Affiliation(s)
- Umberto Perron
- Human Technopole, Milano, Italy
- Omniscope España, Barcelona, Spain
| | - Elena Grassi
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Aikaterini Chatzipli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Viviani
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Emre Karakoc
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lucia Trastulla
- Human Technopole, Milano, Italy
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Lorenzo M Brochier
- Human Technopole, Milano, Italy
- Nerviano Medical Sciences, Milan, Nerviano, Italy
| | - Claudio Isella
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Hagen Klett
- Charles River Germany GmbH, Freiburg, Germany
| | - Ivan Molineris
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Enzo Medico
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Nathalie Conte
- European Molecular Biology Laboratory European Bioinformatics Institute, Cambridge, UK
| | - Ultan McDermott
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- AstraZeneca Oncology R&D, Cambridge, UK
| | - Livio Trusolino
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Andrea Bertotti
- Candiolo Cancer Institute FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Francesco Iorio
- Human Technopole, Milano, Italy.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
2
|
Zhang CY, Zhang R, Zhang L, Wang ZM, Sun HZ, Cui ZG, Zheng HC. Regenerating gene 4 promotes chemoresistance of colorectal cancer by affecting lipid droplet synthesis and assembly. World J Gastroenterol 2023; 29:5104-5124. [PMID: 37744296 PMCID: PMC10514755 DOI: 10.3748/wjg.v29.i35.5104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.
Collapse
Affiliation(s)
- Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Shenyang 110042, Liaoning Province, China
| | - Li Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei Province, China
| | - Zi-Mo Wang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Hong-Zhi Sun
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui 910-1193, Japan
| | - Hua-Chuan Zheng
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
3
|
Hu FJ, Li YJ, Zhang L, Ji DB, Liu XZ, Chen YJ, Wang L, Wu AW. Single-cell profiling reveals differences between human classical adenocarcinoma and mucinous adenocarcinoma. Commun Biol 2023; 6:85. [PMID: 36690709 PMCID: PMC9870908 DOI: 10.1038/s42003-023-04441-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Colorectal cancer is a highly heterogeneous disease. Most colorectal cancers are classical adenocarcinoma, and mucinous adenocarcinoma is a unique histological subtype that is known to respond poorly to chemoradiotherapy. The difference in prognosis between mucinous adenocarcinoma and classical adenocarcinoma is controversial. Here, to gain insight into the differences between classical adenocarcinoma and mucinous adenocarcinoma, we analyse 7 surgical tumour samples from 4 classical adenocarcinoma and 3 mucinous adenocarcinoma patients by single-cell RNA sequencing. Our results indicate that mucinous adenocarcinoma cancer cells have goblet cell-like properties, and express high levels of goblet cell markers (REG4, SPINK4, FCGBP and MUC2) compared to classical adenocarcinoma cancer cells. TFF3 is essential for the transcriptional regulation of these molecules, and may cooperate with RPS4X to eventually lead to the mucinous adenocarcinoma mucus phenotype. The observed molecular characteristics may be critical in the specific biological behavior of mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Fang-Jie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, 100020, China
| | - Ying-Jie Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Li Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Deng-Bo Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Xin-Zhi Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Yong-Jiu Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Lin Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China.
| | - Ai-Wen Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China.
| |
Collapse
|
4
|
Zheng HC, Xue H, Zhang CY. REG4 promotes the proliferation and anti-apoptosis of cancer. Front Cell Dev Biol 2022; 10:1012193. [PMID: 36172286 PMCID: PMC9511136 DOI: 10.3389/fcell.2022.1012193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Regenerating islet-derived 4 (REG4) gene was discovered by high-throughput sequencing of ulcerative colitis cDNA libraries. REG4 is involved in infection and inflammation by enhancing macrophage polarization to M2, via activation of epidermal growth factor receptor (EGFR)/Akt/cAMP-responsive element binding and the killing inflammatory Escherichia coli, and closely linked to tumorigenesis. Its expression was transcriptionally activated by caudal type homeobox 2, GATA binding protein 6, GLI family zinc finger 1, SRY-box transcription factor 9, CD44 intracytoplasmic domain, activating transcription factor 2, and specificity protein 1, and translationally activated by miR-24. REG4 can interact with transmembrane CD44, G protein-coupled receptor 37, mannan and heparin on cancer cells. Its overexpression was observed in gastric, colorectal, pancreatic, gallbladder, ovarian and urothelial cancers, and is closely linked to their aggressive behaviors and a poor prognosis. Additionally, REG4 expression and recombinant REG4 aggravated such cellular phenotypes as tumorigenesis, proliferation, anti-apoptosis, chemoradioresistance, migration, invasion, peritoneal dissemination, tumor growth, and cancer stemness via EGFR/Akt/activator protein-1 and Akt/glycogen synthase kinase three β/β-catenin/transcription factor 4 pathways. Sorted REG4-positive deep crypt secretory cells promote organoid formation of single Lgr5 (+) colon stem cells by Notch inhibition and Wnt activation. Histologically, REG4 protein is specifically expressed in neuroendocrine tumors and signet ring cell carcinomas of the gastrointestinal tract, pancreas, ovary, and lung. It might support the histogenesis of gastric intestinal–metaplasia–globoid dysplasia–signet ring cell carcinoma. In this review, we summarized the structure, biological functions, and effects of REG4 on inflammation and cancer. We conclude that REG4 may be employed as a biomarker of tumorigenesis, subsequent progression and poor prognosis of cancer, and may be a useful target for gene therapy.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-Chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-Yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
5
|
Livadaru C, Moscalu M, Ghitun FA, Huluta AR, Terinte C, Ferariu D, Lunca S, Dimofte GM. Postoperative Quality Assessment Score Can Select Patients with High Risk for Locoregional Recurrence in Colon Cancer. Diagnostics (Basel) 2022; 12:363. [PMID: 35204454 PMCID: PMC8871190 DOI: 10.3390/diagnostics12020363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Monitoring surgical quality has been shown to reduce locoregional recurrence (LRR). We previously showed that the arterial stump length (ASL) after complete mesocolic excision (CME) is a reproducible quality instrument and correlates with the lymph-node (LN) yield. We hypothesized that generating an LRR prediction score by integrating the ASL would predict the risk of LRR after suboptimal surgery. METHODS 502 patients with curative resections for stage I-III colon cancer were divided in two groups (CME vs. non-CME) and compared in terms of surgical data, ASL-derived parameters, pathological parameters, LRR and LRR-free survival. A prediction score was generated to stratify patients at high risk for LRR. RESULTS The ASL showed significantly higher values (50.77 mm ± 28.5 mm) with LRR vs. (45.59 mm ± 28.1 mm) without LRR (p < 0.001). Kaplan-Meier survival analysis showed a significant increase in LRR-free survival at 5.58 years when CME was performed (Group A: 81%), in contrast to non-CME surgery (Group B: 67.2%). CONCLUSIONS The prediction score placed 76.6% of patients with LRR in the high-risk category, with a strong predictive value. Patients with long vascular stumps and positive nodes could benefit from second surgery to complete the mesocolic excision.
Collapse
Affiliation(s)
- Cristian Livadaru
- Surgical Department, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Radiology and Medical Imaging Department, St. Spiridon Emergency County Clinical Hospital, 700111 Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | | | - Cristina Terinte
- Department of Pathology, Regional Oncology Institute, 700483 Iasi, Romania
| | - Dan Ferariu
- Department of Pathology, Regional Oncology Institute, 700483 Iasi, Romania
| | - Sorinel Lunca
- Surgical Department, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Clinic of Surgical Oncology, Regional Oncology Institute, 700483 Iasi, Romania
| | - Gabriel Mihail Dimofte
- Surgical Department, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Clinic of Surgical Oncology, Regional Oncology Institute, 700483 Iasi, Romania
| |
Collapse
|