1
|
Michailidis A, Kosmoliaptsis P, Dimou G, Mingou G, Zlika S, Giankoulof C, Galanis S, Petsatodis E. Cryoprobe Placement Using Electromagnetic Navigation System (IMACTIS® CT-Navigation™) for Cryoablation Treatment of Upper Kidney Pole Lesions and Adrenal Metastases: Experience from a Single-Center, 4-Year Study. Diagnostics (Basel) 2024; 14:1963. [PMID: 39272747 PMCID: PMC11393891 DOI: 10.3390/diagnostics14171963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The aim of this study is to evaluate the safety and efficacy of the use of the IMACTIS® CT-Navigation™-electromagnetic navigation system (EMNS) in cryoablation CT-guided procedures under local anesthesia for the treatment of upper kidney pole and adrenal lesions. We conducted a retrospective analysis of patients with upper kidney pole lesions and adrenal metastases who underwent cryoablation using the IMACTIS-CT®-EMNS between January 2019 and April 2023. The EMNS was used to guide the placement of the cryoprobes with CT guidance under local anesthesia. The primary outcome was technical success, defined as the successful placement of the cryoprobes in the target lesion. A total of 31 patients were studied, of whom, 25 patients were treated with cryoablation for upper pole kidney masses, and 6 patients underwent the cryoablation of adrenal metastases during the study period. The mean age was 60 years (range, 36-82 years), and 21 patients were male. All the upper kidney pole lesions were renal cell carcinomas, and regarding adrenal metastases, the primary cancer sites were the lungs (n = 3), breast (n = 2), and the colon (n = 1). The median size of the lesions was 3,8 cm (range, 1.5-5 cm). All procedures were technically successful, with the cryoprobes accurately placed in the target lesions under CT guidance using the EMNS, avoiding the penetration of any other organs using an oblique trajectory. No major complications were reported, and local tumor control was achieved in all cases. Our initial experience using the EMNS for cryoprobe placement during CT-guided interventional procedures under local anesthesia for the cryoablation treatment of upper pole kidney lesions and adrenal metastases showed that it is safe and effective.
Collapse
Affiliation(s)
- A. Michailidis
- Interventional Radiology Department, General Hospital of Thessaloniki “G.Papanikolaou”, 56429 Thessaloniki, Greece (E.P.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Charalampopoulos G, Bale R, Filippiadis D, Odisio BC, Wood B, Solbiati L. Navigation and Robotics in Interventional Oncology: Current Status and Future Roadmap. Diagnostics (Basel) 2023; 14:98. [PMID: 38201407 PMCID: PMC10795729 DOI: 10.3390/diagnostics14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Interventional oncology (IO) is the field of Interventional Radiology that provides minimally invasive procedures under imaging guidance for the diagnosis and treatment of malignant tumors. Sophisticated devices can be utilized to increase standardization, accuracy, outcomes, and "repeatability" in performing percutaneous Interventional Oncology techniques. These technologies can reduce variability, reduce human error, and outperform human hand-to-eye coordination and spatial relations, thus potentially normalizing an otherwise broad diversity of IO techniques, impacting simulation, training, navigation, outcomes, and performance, as well as verification of desired minimum ablation margin or other measures of successful procedures. Stereotactic navigation and robotic systems may yield specific advantages, such as the potential to reduce procedure duration and ionizing radiation exposure during the procedure and, at the same time, increase accuracy. Enhanced accuracy, in turn, is linked to improved outcomes in many clinical scenarios. The present review focuses on the current role of percutaneous navigation systems and robotics in diagnostic and therapeutic Interventional Oncology procedures. The currently available alternatives are presented, including their potential impact on clinical practice as reflected in the peer-reviewed medical literature. A review of such data may inform wiser investment of time and resources toward the most impactful IR/IO applications of robotics and navigation to both standardize and address unmet clinical needs.
Collapse
Affiliation(s)
- Georgios Charalampopoulos
- 2nd Department of Radiology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 1 Rimini Str, 12462 Athens, Greece;
| | - Reto Bale
- Interventional Oncology/Stereotaxy and Robotics, Department of Radiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Dimitrios Filippiadis
- 2nd Department of Radiology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 1 Rimini Str, 12462 Athens, Greece;
| | - Bruno C. Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Bradford Wood
- Interventional Radiology and Center for Interventional Oncology, NIH Clinical Center and National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Luigi Solbiati
- Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano (Milano), Italy and Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milano), 20072 Milano, Italy;
| |
Collapse
|
3
|
Crocetti L, Scalise P, Bozzi E, Candita G, Cioni R. Thermal ablation of hepatocellular carcinoma. J Med Imaging Radiat Oncol 2023; 67:817-831. [PMID: 38093656 DOI: 10.1111/1754-9485.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/29/2023] [Indexed: 01/14/2024]
Abstract
Percutaneous treatment of hepatocellular carcinoma (HCC) by means of thermal ablation (TA) has been introduced in clinical guidelines as a potentially curative treatment for the early stages of the disease since the early 2000s. Due to its safety profile and cost-effectiveness, TA can be offered as a first-line treatment for patients with HCC smaller than 3 cm. Thermal ablative techniques are in fact widely available at many centres worldwide and include radiofrequency (RF) and microwave (MW) ablation, with the latter increasingly applied in clinical practice in the last decade. Pre-clinical studies highlighted, as potential advantages of MW-based ablation, the ability to achieve higher temperatures (>100°C) and larger ablation zones in shorter times, with less susceptibility to blood flow-induced heat sink effects. Despite these advantages, there is no evidence of superior overall survival in patients treated with MW as compared to those treated with RF ablation. Local control has been proven to be superior to MW ablation with a similar complication rate. It is expected that further improvement of TA results in the treatment of HCC will result from the refinement of guidance and monitoring tools and the careful assessment of ablation margins. Thermal ablative treatments may also be performed on nodules larger than 3 cm by applying multiple devices or combining percutaneous and intra-arterial approaches. The role of novel immunotherapy regimens in combination with ablation is also currently under evaluation in clinical trials, with several potential benefits. In this review, indications, technical principles, results, and future prospects of TA for the treatment of HCC will be examined.
Collapse
Affiliation(s)
- Laura Crocetti
- Division of Interventional Radiology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Paola Scalise
- Division of Interventional Radiology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Elena Bozzi
- Division of Interventional Radiology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Gianvito Candita
- Department of Translational Research, Academic Radiology, University of Pisa, Pisa, Italy
| | - Roberto Cioni
- Division of Interventional Radiology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| |
Collapse
|
4
|
Sorensen AM, Zlevor AM, Kisting MA, Couillard AB, Ziemlewicz TJ, Toia GV, Hinshaw JL, Woods M, Stratchko LM, Pickhardt PJ, Foltz ML, Peppler WW, Lee FT, Knavel Koepsel EM. CT Navigation for Percutaneous Needle Placement: How I Do It. Tech Vasc Interv Radiol 2023; 26:100911. [PMID: 38071032 DOI: 10.1016/j.tvir.2023.100911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
CT navigation (CTN) has recently been developed to combine many of the advantages of conventional CT and CT-fluoroscopic guidance for needle placement. CTN systems display real-time needle position superimposed on a CT dataset. This is accomplished by placing electromagnetic (EM) or optical transmitters/sensors on the patient and needle, combined with fiducials placed within the scan field to superimpose a known needle location onto a CT dataset. Advantages of CTN include real-time needle tracking using a contemporaneous CT dataset with the patient in the treatment position, reduced radiation to the physician, facilitation of procedures outside the gantry plane, fewer helical scans during needle placement, and needle guidance based on diagnostic-quality CT datasets. Limitations include the display of a virtual (vs actual) needle position, which can be inaccurate if the needle bends, the fiducial moves, or patient movement occurs between scans, and limitations in anatomical regions with a high degree of motion such as the lung bases. This review summarizes recently introduced CTN technologies in comparison to historical methods of CT needle guidance. A "How I do it" section follows, which describes how CT navigation has been integrated into the study center for both routine and challenging procedures, and includes step-by-step explanations, technical tips, and pitfalls.
Collapse
Affiliation(s)
- Anna M Sorensen
- Departments of Radiology, University of Wisconsin, Madison, WI
| | - Annie M Zlevor
- Departments of Radiology, University of Wisconsin, Madison, WI
| | | | | | | | - Giuseppe V Toia
- Departments of Radiology, University of Wisconsin, Madison, WI; Medical Physics, University of Wisconsin, Madison, WI
| | - J Louis Hinshaw
- Departments of Radiology, University of Wisconsin, Madison, WI; Departments of Urology, University of Wisconsin, Madison, WI
| | - Michael Woods
- Departments of Radiology, University of Wisconsin, Madison, WI
| | | | | | - Marcia L Foltz
- Departments of Radiology, University of Wisconsin, Madison, WI
| | | | - Fred T Lee
- Departments of Radiology, University of Wisconsin, Madison, WI; Departments of Urology, University of Wisconsin, Madison, WI; Biomedical Engineering, University of Wisconsin, Madison, WI
| | | |
Collapse
|
5
|
Charalampopoulos G, Iezzi R, Tsitskari M, Mazioti A, Papakonstantinou O, Kelekis A, Kelekis N, Filippiadis D. Role of Percutaneous Ablation in the Management of Intrahepatic Cholangiocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1186. [PMID: 37511998 PMCID: PMC10386331 DOI: 10.3390/medicina59071186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Cholangiocarcinoma (CCA) is an invasive cancer accounting for <1% of all cancers and 10-15% of primary liver cancers. Intrahepatic CCA (iCCA) is associated with poor survival rates and high post-surgical recurrence rates whilst most diagnosed patients are not surgical candidates. There is a growing literature suggesting percutaneous ablative techniques for the management of patients with iCCA measuring ≤3 cm with contraindications to surgery as well as for recurrent or residual tumors aiming to provide local cancer treatment and control. Most used ablative therapies for iCCA include radiofrequency and microwave ablation with irreversible electroporation, cryoablation and reversible electroporation (electrochemotherapy) being less commonly encountered techniques. Due to the infiltrative margins of the lesion, there is a need for larger safety margins and ablation zone; multi-apparatus ablation or other variations of the technique such as balloon-assisted approaches can be utilized aiming to increase size of the zone of necrosis. The present review paper focuses upon the current role of percutaneous ablative techniques for the therapeutic management of iCCA. The purpose of this review is to present the current minimally invasive ablative techniques in the treatment of iCCA, including local control and survival rates.
Collapse
Affiliation(s)
- Georgios Charalampopoulos
- 2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, A. Gemelli University Hospital Foundation IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Tsitskari
- Apollonio Private Hospital, 20 Lefkotheou Avenue, 2054 Strovolos, Nicosia, Cyprus
| | - Argyro Mazioti
- 2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Olympia Papakonstantinou
- 2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Alexis Kelekis
- 2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Kelekis
- 2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitrios Filippiadis
- 2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
6
|
Zlevor AM, Kisting MA, Couillard AB, Rossebo AE, Szczykutowicz TP, Mao L, White JK, Hartung MP, Gettle LM, Hinshaw JL, Pickhardt PJ, Ziemlewicz TJ, Foltz ML, Lee FT. Percutaneous CT-Guided Abdominal and Pelvic Biopsies: Comparison of an Electromagnetic Navigation System and CT Fluoroscopy. J Vasc Interv Radiol 2023; 34:910-918. [PMID: 36736821 DOI: 10.1016/j.jvir.2023.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To compare electromagnetic navigation (EMN) with computed tomography (CT) fluoroscopy for guiding percutaneous biopsies in the abdomen and pelvis. MATERIALS AND METHODS A retrospective matched-cohort design was used to compare biopsies in the abdomen and pelvis performed with EMN (consecutive cases, n = 50; CT-Navigation; Imactis, Saint-Martin-d'Hères, France) with those performed with CT fluoroscopy (n = 100). Cases were matched 1:2 (EMN:CT fluoroscopy) for target organ and lesion size (±10 mm). RESULTS The population was well-matched (age, 65 vs 65 years; target size, 2.0 vs 2.1 cm; skin-to-target distance, 11.4 vs 10.7 cm; P > .05, EMN vs CT fluoroscopy, respectively). Technical success (98% vs 100%), diagnostic yield (98% vs 95%), adverse events (2% vs 5%), and procedure time (33 minutes vs 31 minutes) were not statistically different (P > .05). Operator radiation dose was less with EMN than with CT fluoroscopy (0.04 vs 1.2 μGy; P < .001), but patient dose was greater (30.1 vs 9.6 mSv; P < .001) owing to more helical scans during EMN guidance (3.9 vs 2.1; P < .001). CT fluoroscopy was performed with a mean of 29.7 tap scans per case. In 3 (3%) cases, CT fluoroscopy was performed with gantry tilt, and the mean angle out of plane for EMN cases was 13.4°. CONCLUSIONS Percutaneous biopsies guided by EMN and CT fluoroscopy were closely matched for technical success, diagnostic yield, procedure time, and adverse events in a matched cohort of patients. EMN cases were more likely to be performed outside of the gantry plane. Radiation dose to the operator was higher with CT fluoroscopy, and patient radiation dose was higher with EMN. Further study with a wider array of procedures and anatomic locations is warranted.
Collapse
Affiliation(s)
- Annie M Zlevor
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Meridith A Kisting
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Annika E Rossebo
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Timothy P Szczykutowicz
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - James K White
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michael P Hartung
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - J Louis Hinshaw
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Perry J Pickhardt
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Marcia L Foltz
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Fred T Lee
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin; Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|