1
|
Feng S, Huang S, Lin Z. The causal relationship of DTI phenotypes and epilepsy: A two sample mendelian randomization study. Epilepsia Open 2024; 9:2378-2383. [PMID: 39474760 PMCID: PMC11633714 DOI: 10.1002/epi4.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE Clinical studies indicated a link between DTI imaging characteristics and epilepsy, but the causality of this connection had not been established. Therefore, we employed the Mendelian randomization analysis method to determine the causal relationship between DTI imaging characteristics and epilepsy. METHOD We used Mendelian randomization analysis to identify the causal relationship between brain structure and the risk of epilepsy. GWAS data of DTI phenotypes, focal epilepsy, and genetic generalized epilepsy (GGE) were utilized in the analysis. RESULTS Our study found that DTI imaging phenotypes had a causal risk relationship with epilepsy. These phenotypes had a statistical impact on the risk of epilepsy seizures. There were differences in DTI phenotype causality between GGE and focal epilepsy, which were associated with the clinical phenotype differences of the two types of epilepsy. SIGNIFICANCE Our study demonstrated that the diagnosis of subtypes could be assisted by comparing the differences in DTI phenotypes of specific brain regions. This meant that by studying the changes in brain regions before the onset of epilepsy, we might be able to intervene in epilepsy at an earlier stage. PLAIN LANGUAGE SUMMARY Our study used Mendelian randomization to explore the causal relationship between brain structure, as seen in DTI imaging, and epilepsy. We found that specific DTI phenotypes are linked to an increased risk of epilepsy seizures, with notable differences between genetic generalized epilepsy and focal epilepsy. This suggested that analyzing DTI phenotypes could help in diagnosing and potentially intervening in epilepsy earlier by finding brain changes before seizures begin.
Collapse
Affiliation(s)
- Shang Feng
- College of Computer Science and Technology, Harbin Engineering UniversityHarbinChina
| | - Shaobin Huang
- College of Computer Science and Technology, Harbin Engineering UniversityHarbinChina
| | - Zhiguo Lin
- Department of NeurosurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
2
|
Shan M, Mao H, Hu T, Xie H, Ye L, Cheng H. Deep brain stimulation of the subthalamic nucleus for a patient with drug resistant juvenile myoclonic epilepsy: 1 year follow-up. Neurol Sci 2024; 45:4997-5002. [PMID: 38740728 DOI: 10.1007/s10072-024-07553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Drug-resistant juvenile myoclonic epilepsy (DR-JME) remains a significant challenge in neurology. Traditional management strategies often fail to achieve satisfactory control, necessitating innovative treatments. OBJECTIVE This case report aims to evaluate the efficacy and safety of deep brain stimulation (DBS) targeting the subthalamic nucleus (STN-DBS) in a patient with DR-JME. METHODS We describe the treatment of a patient with DR-JME using STN-DBS. The patient underwent implantation and received high-frequency stimulation (HFS) at the STN. RESULTS One year post-implantation, the patient demonstrated a substantial reduction in motor seizure frequency by 87.5%, with improvements in quality of life and seizure severity by 52.0% and 46.7%, respectively. No adverse events were reported during the follow-up period. CONCLUSIONS This case represents the first report of favorable outcomes with STN-DBS in a patient with DR-JME, suggesting that long-term HFS of the STN may be a promising treatment option for patients suffering from this condition.
Collapse
Affiliation(s)
- Ming Shan
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Hongliang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
- First Clinical Medical College, Anhui Medical University, Meishan Road 81, Hefei, 230032, P.R. China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China.
| |
Collapse
|
3
|
Ke M, Hou Y, Zhang L, Liu G. Brain functional network changes in patients with juvenile myoclonic epilepsy: a study based on graph theory and Granger causality analysis. Front Neurosci 2024; 18:1363255. [PMID: 38774788 PMCID: PMC11106382 DOI: 10.3389/fnins.2024.1363255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 05/24/2024] Open
Abstract
Many resting-state functional magnetic resonance imaging (rs-fMRI) studies have shown that the brain networks are disrupted in adolescent patients with juvenile myoclonic epilepsy (JME). However, previous studies have mainly focused on investigating brain connectivity disruptions from the perspective of static functional connections, overlooking the dynamic causal characteristics between brain network connections. In our study involving 37 JME patients and 35 Healthy Controls (HC), we utilized rs-fMRI to construct whole-brain functional connectivity network. By applying graph theory, we delved into the altered topological structures of the brain functional connectivity network in JME patients and identified abnormal regions as key regions of interest (ROIs). A novel aspect of our research was the application of a combined approach using the sliding window technique and Granger causality analysis (GCA). This method allowed us to delve into the dynamic causal relationships between these ROIs and uncover the intricate patterns of dynamic effective connectivity (DEC) that pervade various brain functional networks. Graph theory analysis revealed significant deviations in JME patients, characterized by abnormal increases or decreases in metrics such as nodal betweenness centrality, degree centrality, and efficiency. These findings underscore the presence of widespread disruptions in the topological features of the brain. Further, clustering analysis of the time series data from abnormal brain regions distinguished two distinct states indicative of DEC patterns: a state of strong connectivity at a lower frequency (State 1) and a state of weak connectivity at a higher frequency (State 2). Notably, both states were associated with connectivity abnormalities across different ROIs, suggesting the disruption of local properties within the brain functional connectivity network and the existence of widespread multi-functional brain functional networks damage in JME patients. Our findings elucidate significant disruptions in the local properties of whole-brain functional connectivity network in patients with JME, revealing causal impairments across multiple functional networks. These findings collectively suggest that JME is a generalized epilepsy with localized abnormalities. Such insights highlight the intricate network dysfunctions characteristic of JME, thereby enriching our understanding of its pathophysiological features.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Yaru Hou
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Li Zhang
- Hospital of Lanzhou University of Technology, Lanzhou University of Technology, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Nica A. Drug-resistant juvenile myoclonic epilepsy: A literature review. Rev Neurol (Paris) 2024; 180:271-289. [PMID: 38461125 DOI: 10.1016/j.neurol.2024.02.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
The ILAE's Task Force on Nosology and Definitions revised in 2022 its definition of juvenile myoclonic epilepsy (JME), the most common idiopathic generalized epilepsy disorder, but this definition may well change again in the future. Although good drug response could almost be a diagnostic criterion for JME, drug resistance (DR) is observed in up to a third of patients. It is important to distinguish this from pseudoresistance, which is often linked to psychosocial problems or psychiatric comorbidities. After summarizing these aspects and the various definitions applied to JME, the present review lists the risk factors for DR-JME that have been identified in numerous studies and meta-analyses. The factors most often cited are absence seizures, young age at onset, and catamenial seizures. By contrast, photosensitivity seems to favor good treatment response, at least in female patients. Current hypotheses on DR mechanisms in JME are based on studies of either simple (e.g., cortical excitability) or more complex (e.g., anatomical and functional connectivity) neurophysiological markers, bearing in mind that JME is regarded as a neural network disease. This research has revealed correlations between the intensity of some markers and DR, and above all shed light on the role of these markers in associated neurocognitive and neuropsychiatric disorders in both patients and their siblings. Studies of neurotransmission have mainly pointed to impaired GABAergic inhibition. Genetic studies have generally been inconclusive. Increasing restrictions have been placed on the use of valproate, the standard antiseizure medication for this syndrome, owing to its teratogenic and developmental risks. Levetiracetam and lamotrigine are prescribed as alternatives, as is vagal nerve stimulation, and there are several other promising antiseizure drugs and neuromodulation methods. The development of better alternative treatments is continuing to take place alongside advances in our knowledge of JME, as we still have much to learn and understand.
Collapse
Affiliation(s)
- A Nica
- Epilepsy Unit, Reference Center for Rare Epilepsies, Neurology Department, Clinical Investigation Center 1414, Rennes University Hospital, Rennes, France; Signal and Image Processing Laboratory (LTSI), INSERM, Rennes University, Rennes, France.
| |
Collapse
|
5
|
Shin JH, Song MJ, Kim JH. Valproate use associated with frontal and cerebellar gray matter volume reductions: A voxel-based morphometry study. Epilepsia 2024; 65:e1-e6. [PMID: 37945542 DOI: 10.1111/epi.17825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Recent morphometric magnetic resonance imaging (MRI) studies suggested the possibility that valproate (VPA) use is associated with parieto-occipital cortical thinning in patients with heterogeneous epilepsy syndromes. In this study, we examined the effect of VPA on the brain volume using a large number of homogenous patients with idiopathic generalized epilepsy. Voxel-based morphometry was used to compare regional gray matter (GM) volume between 112 patients currently taking VPA (VPA+ group), 81 patients not currently taking VPA (VPA- group), and 120 healthy subjects (control group). The VPA+ group showed a significant GM volume reduction in the bilateral cerebellum, hippocampus, insula, caudate nucleus, medial frontal cortex/anterior cingulate cortex, primary motor/premotor cortex, medial occipital cortex, and anteromedial thalamus, as compared to the control group. The VPA- group showed a significant GM volume reduction in the anteromedial thalamus and right hippocampus/temporal cortex, as compared to the control group. Compared to the VPA- group, the VPA+ group had a significant GM volume reduction in the bilateral cerebellum, primary motor/premotor cortex, and medial frontal cortex/anterior cingulate cortex. We have provided evidence that VPA use could result in GM volume reductions in the frontal cortex and cerebellum. Our findings should be acknowledged as a potential confounding factor in morphometric MRI studies that include subjects taking VPA.
Collapse
Affiliation(s)
- Ji Hye Shin
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Min Ji Song
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Dunkel H, Strzelczyk A, Schubert-Bast S, Kieslich M. Facial Emotion Recognition in Patients with Juvenile Myoclonic Epilepsy. J Clin Med 2023; 12:4101. [PMID: 37373792 DOI: 10.3390/jcm12124101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies have found facial emotion recognition (FER) impairments in individuals with epilepsy. While such deficits have been extensively explored in individuals with focal temporal lobe epilepsy, studies on individuals with generalized epilepsies are rare. However, studying FER specifically in individuals with juvenile myoclonic epilepsy (JME) is particularly interesting since they frequently suffer from social and neuropsychological difficulties in addition to epilepsy-specific symptoms. Furthermore, recent brain imaging studies have shown subtle microstructural alterations in individuals with JME. FER is considered a fundamental social skill that relies on a distributed neural network, which could be disturbed by network dysfunction in individuals with JME. This cross-sectional study aimed to examine FER and social adjustment in individuals with JME. It included 27 patients with JME and 27 healthy controls. All subjects underwent an Ekman-60 Faces Task to examine FER and neuropsychological tests to assess social adjustment as well as executive functions, intelligence, depression, and personality traits. Individuals with JME performed worse in global FER and fear and surprise recognition than healthy controls. However, probably due to the small sample size, no significant difference was found between the two groups. A potential FER impairment needs to be confirmed in further studies with larger sample size. If so, patients with JME could benefit from addressing possible deficits in FER and social difficulties when treated. By developing therapeutic strategies to improve FER, patients could be specifically supported with the aim of improving social outcomes and quality of life.
Collapse
Affiliation(s)
- Hannah Dunkel
- Clinic for Children and Adolescents, Department of Neuropediatrics, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Susanne Schubert-Bast
- Clinic for Children and Adolescents, Department of Neuropediatrics, Goethe-University, 60590 Frankfurt am Main, Germany
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Matthias Kieslich
- Clinic for Children and Adolescents, Department of Neuropediatrics, Goethe-University, 60590 Frankfurt am Main, Germany
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University, 60528 Frankfurt am Main, Germany
| |
Collapse
|