1
|
Saha S, Sultana S, Rahmat R, Akther T, Nessa A, Jahan M. Patterns of Different Cervical Cytokine Expression in High-Risk Human Papillomavirus-Infected Patients With Cervical Cancer and Its Precancerous Lesions. Clin Med Insights Oncol 2025; 19:11795549251316767. [PMID: 40144778 PMCID: PMC11938483 DOI: 10.1177/11795549251316767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/14/2025] [Indexed: 03/28/2025] Open
Abstract
Background Cervical cancer is the second most common cancer in Bangladesh and is primarily caused by persistent high-risk human papillomavirus (HR-HPV) infection. Several risk factors, including immunological, genetic, environmental, and viral factors, may contribute to the development of cervical cancer. Moreover, a disruption in an otherwise delicate balance between immune response and cytokine production may lead to diseased states. Henceforth, this study aimed to determine and compare selected cytokines, including interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), interleukin-10 (IL-10), GM-CSF, interleukin-8 (IL-8), and MCP-1 among HR-HPV-infected patients with cervical cancer, precancer individuals, and healthy participants to test the propensity of these cytokines to serve as predictive biomarkers for the detection of cervical cancer during its early stages. Methods A cross-sectional study was conducted on female patients visiting two referral hospitals in Bangladesh from September to November 2022. Among them, 80 women were enrolled in the study as patients with cervical cancer and precancerous lesions along with HPV DNA-negative healthy individuals. The selected cytokines in the cervical swab were estimated by flow cytometry. Result Cervical cancer and precancer were primarily detected in patients aged above 40 years (73.3% and 46.7% of the patients in the respective groups). Other significant risk factors, including poor educational, socioeconomic status and nutritional conditions, age of first coitus, multiparity, and tobacco and betel nut consumption, were found significant for the development of cervical cancer and precancer (P < .05). The levels of IL-6, IL-1β, IL-10, IL-8, and MCP-1 were substantially elevated in patients with cancer than in patients with precancer and healthy individuals (P < .001). Moreover, the levels of IL-6, IL-1β, IL-10, and IL-8 were also significantly increased in patients with precancer than in healthy individuals (P < .05). Conclusions Thus, IL-6, IL-1β, IL-10, IL-8, and MCP-1 can be used as potential biomarkers for diagnostic and prognostic purposes in HPV-induced cervical cancer and precancer.
Collapse
Affiliation(s)
- Shamoli Saha
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Sharmin Sultana
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Raad Rahmat
- MTLS Program, Karolinska Institute, Stockholm, Sweden
| | - Tahmina Akther
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Ashrafun Nessa
- Department of Gynecological Oncology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Munira Jahan
- Department of Virology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Yadav D, O’Dwyer E, Agee M, Dutruel SP, Mahajan S, Huicochea Castellanos S. Unraveling the Role of PET in Cervical Cancer: Review of Current Applications and Future Horizons. J Imaging 2025; 11:63. [PMID: 39997565 PMCID: PMC11856187 DOI: 10.3390/jimaging11020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
FDG PET/CT provides complementary metabolic information with greater sensitivity and specificity than conventional imaging modalities for evaluating local recurrence, nodal, and distant metastases in patients with cervical cancer. PET/CT can also be used in radiation treatment planning, which is the mainstay of treatment. With the implementation of various oncological guidelines, FDG PET/CT has been utilized more frequently in patient management and prognostication. Newer PET tracers targeting the tumor microenvironment offer valuable biologic insights to elucidate the mechanism of treatment resistance and tumor aggressiveness and identify the high-risk patients. Artificial intelligence and machine learning approaches have been utilized more recently in metastatic disease detection, response assessment, and prognostication of cervical cancer.
Collapse
Affiliation(s)
- Divya Yadav
- Molecular Imaging & Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Elisabeth O’Dwyer
- Molecular Imaging & Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew Agee
- Molecular Imaging & Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Silvina P. Dutruel
- Molecular Imaging & Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonia Mahajan
- Molecular Imaging & Therapeutics, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
3
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2025; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Saleh T, Himsawi N, Al Rousan A, Alhesa A, El-Sadoni M, Khawaldeh S, Shahin NA, Ghalioun AA, Shawish B, Friehat K, Alotaibi MR, Abu Al Karsaneh O, Abu-Humaidan A, Khasawneh R, Khasawneh AI, Al Shboul S. Variable Expression of Oncogene-Induced Senescence/SASP Surrogates in HPV-Associated Precancerous Cervical Tissue. Curr Issues Mol Biol 2024; 46:13696-13712. [PMID: 39727946 PMCID: PMC11727613 DOI: 10.3390/cimb46120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Oncogene-induced senescence (OIS) is a form of cellular senescence triggered by oncogenic signaling and, potentially, by infection with oncogenic viruses. The role of senescence, along with its associated secretory phenotype, in the development of cervical cancer remains unclear. Additionally, the expression of the senescence-associated secretory phenotype (SASP) has not yet been explored in cervical premalignant lesions infected by the Human Papilloma Virus (HPV). This study aimed to investigate the expression of OIS and SASP markers in HPV-infected cervical precancerous lesions. We used a set of patient-derived precancerous (n = 32) and noncancerous (chronic cervicitis; n = 10) tissue samples to investigate the gene expression of several OIS (LMNB1, CDKN2A, CDKN2B, and CDKN1A), and SASP (IL1A, CCL2, TGFB1, CXCL8, and MMP9) biomarkers using qRT-PCR. OIS status was confirmed in precancerous lesions based on Lamin B1 downregulation by immunohistochemical staining. HPV status for all precancerous lesions was tested. Most of the noncancerous samples showed high Lamin B1 expression, however, precancerous lesions exhibited significant Lamin B1 downregulation (p < 0.001). Fifty-five percent of the precancerous samples were positive for HPV infection, with HPV-16 as the dominant genotype. Lamin B1 downregulation coincided with HPV E6 positive expression. CDKN2A and CDKN2B expression was higher in precancerous lesions compared to noncancerous tissue, while LMNB1 was downregulated. The SASP profile of premalignant lesions included elevated CXCL8 and TGFB1 and reduced IL1A, CCL2, and MMP9. this work shall provide an opportunity to further examine the role of OIS and the SASP in the process of malignant cervical transformation.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Amani Al Rousan
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mohammed El-Sadoni
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Suzan Khawaldeh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ala’ Abu Ghalioun
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Bayan Shawish
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Kholoud Friehat
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Moureq R. Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12271, Saudi Arabia
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Anas Abu-Humaidan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Rame Khasawneh
- King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
5
|
Fujii T, Nishio E, Tsukamoto T, Kukimoto I, Iwata A. Performance of an ancillary test for cervical cancer that measures miRNAs and cytokines in serum and cervical mucus. Cancer Sci 2024; 115:2795-2807. [PMID: 38749770 PMCID: PMC11309926 DOI: 10.1111/cas.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/07/2024] [Accepted: 05/03/2024] [Indexed: 08/10/2024] Open
Abstract
Currently, human papillomavirus tests and cytology are used to screen for cervical cancer. However, more accurate ancillary screening tests are needed. MicroRNAs (miRNAs) and cytokines are promising biomarkers that are aberrantly expressed in cervical cancer. Therefore, the potential of developing new screening markers based on the levels of miRNAs and cytokines in serum and local mucus samples from the same patients with cervical neoplasia was investigated. miRNA screening was performed by microarray and measurement using real-time reverse-transcriptase PCR. Cytokine were measured using multiplex bead assay, and changes in expressions were analyzed based on disease severity. As lesions progressed, miR-20b-5p, -155-5p, -144-3p, -451a, and -126-3p expression levels were increased in mucus, and miR-16-5p, -223-3p, and -451a expression levels were decreased in serum. Regarding cytokines, IL-6, IL-8, monocyte chemoattractant protein-1, Eotaxin, interferon-γ, and RANTES were increased, whereas granulocyte-colony-stimulating factor (G-CSF) was significantly decreased in mucus. miRNAs and cytokines in serum did not have high diagnostic accuracy. However, a combination of miR-20b-5p, -451a, -126-3p, Eotaxin, as well as G-CSF in mucus samples, had high diagnostic accuracy with an area under the receiver operating characteristic curve of 0.989 (0.979-0.999). Our results suggest that using mucus for this ancillary test is more beneficial than serum.
Collapse
Affiliation(s)
- Takuma Fujii
- Department of Gynecology, School of MedicineFujita Health UniversityToyoakeAichiJapan
- Department of Obstetrics and Gynecology, School of MedicineFujita Health UniversityToyoakeAichiJapan
- Fujita Health University Okazaki Medical CenterOkazakiAichiJapan
| | - Eiji Nishio
- Department of Obstetrics and Gynecology, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Tetsuya Tsukamoto
- Department of Pathology, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Iwao Kukimoto
- Pathogen Genomics CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Aya Iwata
- Department of Gynecology, School of MedicineFujita Health UniversityToyoakeAichiJapan
- Department of Obstetrics and Gynecology, School of MedicineFujita Health UniversityToyoakeAichiJapan
| |
Collapse
|
6
|
He C, Wu Y, Nan X, Zhang W, Luo Y, Wang H, Li M, Liu C, Liu J, Mou X, Liu Y. Induction of CX3CL1 expression by LPS and its impact on invasion and migration in oral squamous cell carcinoma. Front Cell Dev Biol 2024; 12:1371323. [PMID: 38915444 PMCID: PMC11195639 DOI: 10.3389/fcell.2024.1371323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.
Collapse
Affiliation(s)
- Chanjuan He
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Changsha Stomatological Hospital, Changsha, China
| | - Yuehan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xiaoxu Nan
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Weifang Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Yu Luo
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Honglan Wang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Mengqi Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Changyue Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Jiaming Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xuelin Mou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
7
|
Fernandez-Avila L, Castro-Amaya AM, Molina-Pineda A, Hernández-Gutiérrez R, Jave-Suarez LF, Aguilar-Lemarroy A. The Value of CXCL1, CXCL2, CXCL3, and CXCL8 as Potential Prognosis Markers in Cervical Cancer: Evidence of E6/E7 from HPV16 and 18 in Chemokines Regulation. Biomedicines 2023; 11:2655. [PMID: 37893029 PMCID: PMC10604789 DOI: 10.3390/biomedicines11102655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cervical cancer (CC) is a serious global health issue, and it is well-known that HPV infection is the main etiological factor that triggers carcinogenesis. In cancer, chemokine ligands and receptors are involved in tumor cell growth, metastasis, leukocyte infiltration, and angiogenesis; however, information on the role played by E6/E7 of HPV16/18 in the modulation of chemokines is very limited. Therefore, this study aimed to determine whether chemokines are differentially expressed in CC-derived cell lines; if E6/E7 oncoproteins from HPV16 and 18 are capable of mediating chemokine expression, what is the expression profile of chemokines in tissues derived from CC and what is their impact on the overall survival of patients with this pathology? For this purpose, RNA sequencing and real-time PCR were performed on SiHa, HeLa, and C33A tumorigenic cell lines, on the non-tumorigenic HaCaT cells, and the E6/E7 HPV-transduced HaCaT cell models. Furthermore, chemokine expression and survival analysis were executed on 304 CC and 22 normal tissue samples from The Cancer Genome Atlas (TCGA) repository. The results demonstrate that CXCL1, CXCL2, CXCL3, and CXCL8 are regulated by E6/E7 of HPV16 and 18, are overexpressed in CC biopsies, and that their higher expression is related to a worse prognostic survival.
Collapse
Affiliation(s)
- Leonardo Fernandez-Avila
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Aribert Maryosly Castro-Amaya
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Andrea Molina-Pineda
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Jalisco, Mexico; (A.M.-P.); (R.H.-G.)
- Consejo Nacional de Ciencia y Tecnología, CONAHCYT, Mexico City 03940, Mexico
| | - Rodolfo Hernández-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Jalisco, Mexico; (A.M.-P.); (R.H.-G.)
| | - Luis Felipe Jave-Suarez
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| | - Adriana Aguilar-Lemarroy
- Programa de Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
8
|
Zhang Y, Xu L, Li L. The feasibility of using the compound kushen injection to treat cervical cancer based on network pharmacology and transcriptomics. Medicine (Baltimore) 2023; 102:e35135. [PMID: 37682145 PMCID: PMC10489532 DOI: 10.1097/md.0000000000035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND To investigate the molecular targets and mechanisms of compound kushen injection (CKI) in the prevention and treatment of cervical cancer based on network pharmacology and transcriptomics. METHODS In this study, we used network pharmacology methods to screen for effective compounds, integrated the results of network pharmacology and RNA-seq to comprehensively screen and predict target genes, analyze the biological functions and signaling pathways of target genes, and construct a PPI network to screen for hub genes. The results were further verified by biological experiments, molecular docking, RT-PCR, and western blot analysis. RESULTS The results showed that the hub genes CXCL2, anti-vascular endothelial growth factor, hexokinase 2 are therapeutic targets of CKI for the treatment of Cervical Cancer. These targets were significantly enriched in pathways mainly including pathways in cancer, cell cycle, MAPK signaling pathways, etc. In vitro cell experiments showed that CKI could effectively inhibit the proliferation of cancer cells, promote apoptosis, and induce cell cycle arrest. RT-PCR and western blot experiments showed that the expression of hub genes was significantly decreased. The compounds have good binding activity to hub genes. CONCLUSION CKI, based on its active ingredients and through multiple targets and multiple pathways, can stop the growth of cervical cancer cells at a certain phase of the cell cycle and cause apoptosis, which proved CKI's effect in treating cervical cancer.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Gynecology, Zhaoqing First People’s Hospital, Zhaoqing, China
| | - Linjing Xu
- Department of Gynecology, Zhaoqing First People’s Hospital, Zhaoqing, China
| | - Ling Li
- Department of Gynecology, Zhaoqing First People’s Hospital, Zhaoqing, China
| |
Collapse
|
9
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
10
|
Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. Semin Cancer Biol 2022; 86:513-531. [PMID: 35150864 DOI: 10.1016/j.semcancer.2022.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Small secretory proteins of immune cells are mostly Cytokines, which include chemokines, interleukins, interferons, lymphokines and tumor necrosis factors but not hormones or growth factors. These secretory proteins are the molecular messengers and primarily involved in autocrine, paracrine and endocrine signaling as immunomodulating agents. Hence, these proteins actually regulate the cells of immune system to communicate with one another to produce a synchronized, robust, still self-regulated response to a specific antigen. Chemokines are smaller secreted proteins that control overall immune cell movement and location; these chemokines are divided into 4 subgroups, namely, CXC, CC, CX3C and C according to the position of 4 conserved cysteine residues. Complete characterization of cytokines and chemokines can exploit their vast signaling networks to develop cancer treatments. These secretory proteins like IL-6, IL-10, IL-12, TNFα, CCL2, CXCL4 & CXCL8 are predominantly expressed in most of the gynecological cancers, which directly stimulate immune effector cells and stromal cells at the tumor site and augment tumor cell recognition by cytotoxic T-cells. Hence; these secretory proteins are the major regulators, which can actually modulate all kinds of gynecological cancers. Furthermore, advancements in adoptive T-cell treatment have relied on the use of multiple cytokines/chemokines to establish a highly regulated environment for anti-tumor T cell growth. A number of in vitro studies as well as animal models and clinical subjects have also shown that cytokines/chemokines have broad antitumor activity, which has been translated into a number of cancer therapy approaches. This review will focus on the foremost cytokines & chemokines involved in the majority of the gynecological malignancies and discuss their basic biology as well as clinical applications.
Collapse
Affiliation(s)
- Niranjan Kumar
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | - Akanksha Vyas
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| |
Collapse
|
11
|
Dai R, Tao R, Li X, Shang T, Zhao S, Ren Q. Expression profiling of mRNA and functional network analyses of genes regulated by human papilloma virus E6 and E7 proteins in HaCaT cells. Front Microbiol 2022; 13:979087. [PMID: 36188003 PMCID: PMC9515614 DOI: 10.3389/fmicb.2022.979087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomavirus (HPV) oncogenes E6 and E7 are essential for HPV-related cancer development. Here, we developed a cell line model using lentiviruses for transfection of the HPV16 oncogenes E6 and E7 and investigated the differences in mRNA expression during cell adhesion and chemokine secretion. Subsequently, RNA sequencing (RNA-seq) analysis was performed to explore the differences in mRNA expression. Compared to levels in the control group, 2,905 differentially expressed mRNAs (1,261 downregulated and 1,644 upregulated) were identified in the HaCaT-HPV16E6E7 cell line. To predict the functions of these differentially expressed genes (DEGs) the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used. Protein–protein interactions were established, and the hub gene was identified based on this network. Real-time quantitative-PCR (RT-qPCR) was conducted to confirm the levels of 14 hub genes, which were consistent with the RNA-seq data. According to this, we found that these DEGs participate in the extracellular matrix (ECM), cell adhesion, immune control, and cancer-related signaling pathways. Currently, an increasing number of clinicians depend on E6/E7mRNA results to make a comprehensive judgment of cervical precancerous lesions. In this study, 14 hub genes closely related to the expression of cell adhesion ability and chemokines were analyzed in HPV16E6E7-stably expressing cell lines, which will open up new research ideas for targeting E6E7 in the treatment of HPV-related cancers.
Collapse
Affiliation(s)
- Renjinming Dai
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Tao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiu Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Shang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shixian Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingling Ren
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Qingling Ren,
| |
Collapse
|
12
|
Oral Papillomatosis: Its Relation with Human Papilloma Virus Infection and Local Immunity—An Update. Medicina (B Aires) 2022; 58:medicina58081103. [PMID: 36013570 PMCID: PMC9415166 DOI: 10.3390/medicina58081103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Oral papilloma lesions may appear as a result of HPV infection, or not, and only special molecular methods could differentiate them. Low-risk and high-risk HPV types could induce oral HPV papillomatosis with different natural evolution, clearance and persistence mechanisms. The pathogenic mechanisms are based on the crosstalk between the oral epithelial and immune cells and this very efficient virus. HPV acts as a direct inducer in the process of transforming a benign lesion into a malignant one, the cancerization process being also debated in this paper. According to the degree of malignity, three types of papillomatous lesions can be described in the oral cavity: benign lesions, potential malign disorders and malignant lesions. The precise molecular diagnostic is important to identify the presence of various virus types and also the virus products responsible for its oncogenicity. An accurate diagnostic of oral papilloma can be established through a good knowledge of etiological and epidemiological factors, clinical examination and laboratory tests. This review intends to update the pathogenic mechanisms driving the macroscopic and histological features of oral papillomatosis having HPV infection as the main etiological factor, focusing on its interreference in the local immunity. In the absence of an accurate molecular diagnostic and knowledge of local immunological conditions, the therapeutic strategy could be difficult to decide.
Collapse
|
13
|
Growth regulated oncogene-α contribute to EMT/MMPs pathway by binding its receptors in head and neck squamous cell carcinoma. Life Sci 2022; 306:120791. [PMID: 35817169 DOI: 10.1016/j.lfs.2022.120791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Squamous cell carcinoma (SCC) is the most common malignant tumor of the head and neck and generally detected in the late stages when the cancer has advanced, and therefore has a poor prognosis and survival rate. A high expression of growth-related oncogene alpha (Groα) is associated with tumor metastasis and invasion and the poor survival rate of patients. Microarray reveals that Groα exhibits a cancer-specific response in HNSCC. Quantitative real-time PCR (qRT-PCR) results concerning the mRNA expression of Groα in HNSCC tissues; indicate that Groα was more highly expressed in HNSCC than in non-cancerous matched tissue (NCMT). The serum of HNSCC patients and healthy subjects demonstrates that the expression of Groα in the HNSCC patients significantly exceeded than in healthy subjects. Furthermore, exposure Groα to stimulated the proliferation, clonogenicity and migration with HNSCC cells (SCC4, SCC9, SCC25 and OECM-1), yielding a stronger response than in non-malignant HaCaT and DOK cells. A high expression of Groα and its receptors CXCR1/2 (chemokine (C-X-C motif) receptor) in HNSCC tissues are highly correlated with tumor progression stage and metastasis. Following the treatment of SCC25 and OECM-1 cells with Groα, β-catenin, matrix metalloproteinases (MMP)-2, MMP-7 and MMP-9 expressions significantly increased but E-cadherin expression was slightly decreased, suggesting that the EMT and metastasis processes were activated by Groα. These findings constitute the first evidence that Groα promotes epithelial mesenchymal transition (EMT) and MMPs expressions in HNSCC via activating CXCR1/2, suggesting a role for Groα in mediating metastasis and its potential as a therapeutic target.
Collapse
|