1
|
Benítez-Marín MJ, Blasco-Alonso M, de Rodríguez de Fonseca F, Jiménez JS, Rivera P, González-Mesa E. Evaluating neuronal damage biomarkers at birth for predicting neurodevelopmental risks in foetal growth restriction. Acta Paediatr 2025; 114:272-284. [PMID: 39601356 DOI: 10.1111/apa.17521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
AIM This study was based on the need to predict neurodevelopmental outcomes of children with foetal growth restriction. The aim was to systematically review the correlation between biomarkers of neural injury in children with foetal growth restriction and their neurodevelopment. METHOD Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the review included studies on growth-restricted foetuses that measured biomarkers of postpartum brain injury and assessed neurodevelopment in childhood. Studies published between 1 January 2014 and 31 March 2024 were identified through PubMed and Embase, with the study protocol registered in PROSPERO (CRD42024520254). RESULTS Only five met the inclusion criteria. Results showed that urinary S100B levels were significantly elevated in foetal growth restriction, negatively correlating with neurological development at 7 days of life. Neuron-specific enolase negatively correlated with cognitive, motor and socio-emotional development. Urinary nerve growth factor levels were significantly lower in neonates with foetal growth restriction, correlating with poor neurodevelopment. No alterations in BDNF levels were observed. Tau protein levels were lower in children with foetal growth restriction and adverse outcomes. CONCLUSION The study emphasised the need for further research on biomarkers and predictive models of neurodevelopment in children with foetal growth restriction.
Collapse
Affiliation(s)
- Mª José Benítez-Marín
- Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, Málaga, Spain
- Obstetrics and Gynecology Service, Virgen de la Victoria University Hospital, Málaga, Spain
| | - Marta Blasco-Alonso
- Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, Málaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Málaga University, Málaga, Spain
| | - Fernando de Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- Servicio Neurologia, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jesús S Jiménez
- Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, Málaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Málaga University, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Málaga, Spain
- UGC Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Ernesto González-Mesa
- Research Group in Maternal-Fetal Medicine, Epigenetics, Women's Diseases and Reproductive Health, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Obstetrics and Gynecology Service, Regional University Hospital of Malaga, Málaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Málaga University, Málaga, Spain
| |
Collapse
|
2
|
Granitzer S, Widhalm R, Atteneder S, Fernandez MF, Mustieles V, Zeisler H, Hengstschläger M, Gundacker C. BDNF and KISS-1 Levels in Maternal Serum, Umbilical Cord, and Placenta: The Potential Role of Maternal Levels as Effect Biomarker. EXPOSURE AND HEALTH 2023:1-17. [PMID: 37360514 PMCID: PMC10225291 DOI: 10.1007/s12403-023-00565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and kisspeptin-1 (KISS-1) regulate placental development and fetal growth. The predictive value of maternal serum BDNF and KISS-1 concentrations for placental and umbilical cord levels has not yet been explored. The influence of prenatal lead (Pb) and cadmium (Cd) exposure and maternal iron status on BDNF and KISS-1 levels is also unclarified and of concern. In a pilot cross-sectional study with 65 mother-newborn pairs, we analyzed maternal and cord serum levels of pro-BDNF, mature BDNF, and KISS-1, BDNF, and KISS-1 gene expression in placenta, Pb and Cd in maternal and umbilical cord blood (erythrocytes), and placenta. We conducted a series of in vitro experiments using human primary trophoblast cells (hTCs) and BeWo cells to verify main findings of the epidemiological analysis. Strong and consistent correlations were observed between maternal serum levels of pro-BDNF, mature BDNF, and KISS-1 and corresponding levels in umbilical serum and placental tissue. Maternal red blood cell Pb levels were inversely correlated with serum and placental KISS-1 levels. Lower expression and release of KISS-1 was also observed in Pb-exposed BeWo cells. In vitro Pb exposure also reduced cellular BDNF levels. Cd-treated BeWo cells showed increased pro-BDNF levels. Low maternal iron status was positively associated with low BDNF levels. Iron-deficient hTCs and BeWo cells showed a consistent decrease in the release of mature BDNF. The correlations between maternal BDNF and KISS-1 levels, placental gene expression, and umbilical cord serum levels, respectively, indicate the strong potential of maternal serum as predictive matrix for BDNF and KISS-1 levels in placentas and fetal sera. Pb exposure and iron status modulate BDNF and KISS-1 levels, but a clear direction of modulations was not evident. The associations need to be confirmed in a larger sample and validated in terms of placental and neurodevelopmental function. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00565-w.
Collapse
Affiliation(s)
- Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| | - Simon Atteneder
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
| | - Mariana F. Fernandez
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs.GRANADA), Granada, Spain
- Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (Ibs.GRANADA), Granada, Spain
- Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, 1090 Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Vienna, Austria
| |
Collapse
|
3
|
Musco H, Beecher K, Chand KK, Colditz PB, Wixey JA. Blood Biomarkers in the Fetally Growth Restricted and Small for Gestational Age Neonate: Associations with Brain Injury. Dev Neurosci 2023; 46:84-97. [PMID: 37231871 DOI: 10.1159/000530492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/29/2023] [Indexed: 05/27/2023] Open
Abstract
Fetal growth restriction (FGR) and small for gestational age (SGA) infants have increased risk of mortality and morbidity. Although both FGR and SGA infants have low birthweights for gestational age, a diagnosis of FGR also requires assessments of umbilical artery Doppler, physiological determinants, neonatal features of malnutrition, and in utero growth retardation. Both FGR and SGA are associated with adverse neurodevelopmental outcomes ranging from learning and behavioral difficulties to cerebral palsy. Up to 50% of FGR, newborns are not diagnosed until around the time of birth, yet this diagnosis lacks further indication of the risk of brain injury or adverse neurodevelopmental outcomes. Blood biomarkers may be a promising tool. Defining blood biomarkers indicating an infant's risk of brain injury would provide the opportunity for early detection and therefore earlier support. The aim of this review was to summarize the current literature to assist in guiding the future direction for the early detection of adverse brain outcomes in FGR and SGA neonates. The studies investigated potential diagnostic blood biomarkers from cord and neonatal blood or serum from FGR and SGA human neonates. Results were often conflicting with heterogeneity common in the biomarkers examined, timepoints, gestational age, and definitions of FGR and SGA used. Due to these variations, it was difficult to draw strong conclusions from the results. The search for blood biomarkers of brain injury in FGR and SGA neonates should continue as early detection and intervention is critical to improve outcomes for these neonates.
Collapse
Affiliation(s)
- Hannah Musco
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Kirat K Chand
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Paul B Colditz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
- Perinatal Research Centre, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Julie A Wixey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|