1
|
Zhang J, Gao P, Chang WR, Song JY, An FY, Wang YJ, Xiao ZP, Jin H, Zhang XH, Yan CL. The role of HIF-1α in hypoxic metabolic reprogramming in osteoarthritis. Pharmacol Res 2025; 213:107649. [PMID: 39947451 DOI: 10.1016/j.phrs.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The joint dysfunction caused by osteoarthritis (OA) is increasingly becoming a major challenge in global healthcare, and there is currently no effective strategy to prevent the progression of OA. Therefore, better elucidating the relevant mechanisms of OA occurrence and development will provide theoretical basis for formulating new prevention and control strategies. Due to long-term exposure of cartilage tissue to the hypoxic microenvironment of joints, metabolic reprogramming changes occur. Hypoxia-inducible factor-1alpha (HIF-1α), as a core gene regulating hypoxia response in vivo, plays an important regulatory role in the hypoxic metabolism of chondrocytes. HIF-1α adapts to the hypoxic microenvironment by regulating metabolic reprogramming changes such as glycolysis, oxidative phosphorylation (OXPHOS), amino acid metabolism, and lipid metabolism in OA chondrocytes. In addition, HIF-1α also regulates macrophage polarization and synovial inflammation, chondrocytes degeneration and extracellular matrix (ECM) degradation, subchondral bone remodeling and angiogenesis in the hypoxic microenvironment of OA, and affects the pathophysiological progression of OA. Consequently, the regulation of chondrocytes metabolic reprogramming by HIF-1α has become an important therapeutic target for OA. Therefore, this article reviews the mechanism of hypoxia affecting chondrocyte metabolic reprogramming, focusing on the regulatory mechanism of HIF-1α on chondrocyte metabolic reprogramming, and summarizes potential effective ingredients or targets targeting chondrocyte metabolic reprogramming, in order to provide more beneficial basis for the prevention and treatment of clinical OA and the development of effective drugs.
Collapse
Affiliation(s)
- Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Wei-Rong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Jia-Yi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Fang-Yu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Yu-Jie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Zhi-Pan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Hua Jin
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Xu-Hui Zhang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Chun-Lu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China; Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| |
Collapse
|
2
|
Kiliç Y, Guzel Erdogan D, Baykul M, Nas K. Examining the functions of the vascular endothelial growth factor/hypoxia-inducible factor signaling pathway in psoriatic arthritis. Arch Rheumatol 2023; 38:579-589. [PMID: 38125055 PMCID: PMC10728743 DOI: 10.46497/archrheumatol.2023.9898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives The present study aimed to examine the roles of the vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF), and heme oxygenase-1 (HO-1) in psoriatic arthritis (PsA). Patients and methods In this cross-sectional study conducted between November 2020 and May 2021, 64 patients (43 female, 21 male; mean age: 43.2±10.4 years; range, 22 to 60 years) with active PsA were included in the patient group, and 64 healthy volunteers (43 female, 21 male; mean age: 42.8±10.5 years; range, 23 to 61 years) were included in the control group. The demographic features of all cases were recorded. The following indices were used to assess the activity of PsA: Bath Ankylosing Spondylitis Disease Activity Index, Disease Activity Score in 28 joints (DAS28), and Visual Analog Scale. Additionally, Disease Activity in Psoriatic Arthritis (DAPSA) and Psoriasis Area and Severity Index (PASI) were used to evaluate the patients. The biochemical parameters of the patients were calculated. The serum levels of VEGF, HIF, and HO-1 were determined using an enzyme-linked immunosorbent assay. Results When the molecule levels and clinical features of the groups were evaluated, it was found that the VEGF and HIF-1 levels were higher in the patient group compared to the control group (p<0.05). No difference was observed in the comparison of the HO-1 levels of the patient group and the control group (p<0.05). A positive correlation was found between VEGF, HIF-1, and HO-1 (p<0.05). A positive relationship was found between VEGF and HIF-1 and erythrocyte sedimentation rate, C-reactive protein, DAPSA score, and PASI score (p<0.05). It was also determined that there was a positive relationship between the HIF molecule and DAS28 (p<0.05). Conclusion According to the results obtained in the present study, VEGF and HIF play a role in the etiology of PsA, and the observation of intermolecular correlation suggests that these molecules move together in pathogenesis.
Collapse
Affiliation(s)
- Yavuz Kiliç
- Department of Physiotherapy and Rehabilitation, Sakarya University of Applied Sciences, Vocational School of Health Services, Sakarya, Türkiye
| | - Derya Guzel Erdogan
- Department of Physiology, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| | - Merve Baykul
- Department of Physical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| | - Kemal Nas
- Department of Physical Medicine and Rehabilitation, Sakarya University Faculty of Medicine, Sakarya, Türkiye
| |
Collapse
|
3
|
Krenytska D, Strubchevska K, Kozyk M, Vovk T, Halenova T, Kot L, Raksha N, Savchuk O, Falalyeyeva T, Tsyryuk O, Ostapchenko L. Circulating levels of inflammatory cytokines and angiogenesis-related growth factors in patients with osteoarthritis after COVID-19. Front Med (Lausanne) 2023; 10:1168487. [PMID: 37484856 PMCID: PMC10358362 DOI: 10.3389/fmed.2023.1168487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
Background The disease COVID-19, caused by SARS-CoV-2 infection, has a systemic effect and is associated with a number of pathophysiological mechanisms that mobilize a wide range of biomolecules. Cytokines and growth factors (GFs) are critical regulators of tissue damage or repair in osteoarthritis (OA) and are being recognized as key players in the pathogenesis of COVID-19. A clear understanding of the long-term consequences of SARS-CoV-2 infection, especially in patients with concomitant chronic diseases, is limited and needs to be elucidated. The study aimed to evaluate the degree of inflammation and levels of pro-angiogenic and hypoxic factors, as well as heat shock proteins HSP60 and HSP70 in plasma, of patients with OA after recovery from COVID-19. Methods The research involved patients of an orthopedic specialty clinic aged 39 to 80 diagnosed with knee OA. All examined patients were divided into three groups: the Control group included conditionally healthy donors, group OA included patients with knee OA mainly stage II or III and the group of OA and COVID-19 included patients with OA who had COVID-19. The plasma levels of pro-inflammatory molecules IL-1β, IL-6, TNF-α, NF-κB, angiogenic factors VEGF, FGF-2, PDGF, hypoxic factor HIF-1α and molecular chaperones HSP60 and HSP70 were measured by enzyme-linked immunosorbent assay. Results The study showed that in both groups of patients, with OA and convalescent COVID-19, there was an increase in the plasma level of IL-1β and a decrease in TNF-α and NF-κB levels when compared to healthy controls. Systemic deregulation of the cytokine profile was accompanied by reduction in plasma levels of pro-angiogenic growth factors, most pronounced in cases of VEGF and PDGF. This analysis did not reveal any significant difference in the plasma level of HIF-1α. A decrease in the level of stress protein HSP60 in the blood of patients with OA, as well as those patients who have had SARS-CoV-2 infection, has been established. Conclusion The results suggest the potential role pro-inflammatory cytokines and angiogenesis-related growth factors in pathogenesis of both joint pathologies and long-term systemic post-COVID-19 disorders.
Collapse
Affiliation(s)
- Daryna Krenytska
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Marko Kozyk
- William Beaumont Hospital, Royal Oak, MI, United States
| | - Tetiana Vovk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetiana Halenova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Larysa Kot
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nataliia Raksha
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olexii Savchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olena Tsyryuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Liudmyla Ostapchenko
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
4
|
Motlana MK, Ngoepe MN. Computational Fluid Dynamics (CFD) Model for Analysing the Role of Shear Stress in Angiogenesis in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:7886. [PMID: 37175591 PMCID: PMC10178063 DOI: 10.3390/ijms24097886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterised by an attack on healthy cells in the joints. Blood flow and wall shear stress are crucial in angiogenesis, contributing to RA's pathogenesis. Vascular endothelial growth factor (VEGF) regulates angiogenesis, and shear stress is a surrogate for VEGF in this study. Our objective was to determine how shear stress correlates with the location of new blood vessels and RA progression. To this end, two models were developed using computational fluid dynamics (CFD). The first model added new blood vessels based on shear stress thresholds, while the second model examined the entire blood vessel network. All the geometries were based on a micrograph of RA blood vessels. New blood vessel branches formed in low shear regions (0.840-1.260 Pa). This wall-shear-stress overlap region at the junctions was evident in all the models. The results were verified quantitatively and qualitatively. Our findings point to a relationship between the development of new blood vessels in RA, the magnitude of wall shear stress and the expression of VEGF.
Collapse
Affiliation(s)
- Malaika K. Motlana
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malebogo N. Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
5
|
Galal S, Hassan RM, Labib HSA. Association of vascular endothelial growth factor serum levels with ankylosing spondylitis in Egyptian patients. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2023. [DOI: 10.1186/s43166-023-00179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
Background
Ankylosing spondylitis (AS) is one of inflammatory rheumatic diseases which result in wide range of manifestations on the musculoskeletal system and axial joint specifically. Endothelial cell migration and proliferation, as well as subsequent neoangiogenesis and remodelling in autoimmune disorders, are pathogenic mechanisms that are fundamental to inflammation activation and angiogenesis. The development of advanced lesions is thought to involve vascular proliferation as well as vascular endothelial growth factor (VEGF), which serves a regulatory role. It was found that AS patients had increased serum levels of VEGF, which were linked to the disease activity.
Aim of the work
The purpose of this study is to measure serum VEGF levels in Egyptian AS patients and assess their relation to disease-related variables, including radiographic findings.
Results
VEGF serum levels showed a highly significant positive correlation with Bath Ankylosing Spondylitis Functional Index (BASFI) and modified Stroke Ankylosing Spondylitis Spinal Score (MSASS) (p < 0.001); also, there was a significant correlation between the VEGF values and the Ankylosing Spondylitis Disease Activity Index (ASDAS) and the New York x-ray sacroiliac score.
Conclusions
These findings and data illustrate the strong relationship between ASDAS and VEGF and the radiographic score in AS patients. ASDAS combined with VEGF not only is considered a tool for determining the level of disease activity only but also is considered as an indicator for the assessment of the syndesmophytes formation, which performs a crucial role in the prognosis and outcome in AS patients.
Collapse
|