1
|
Chen X, Yan Z, Pan Q, Zhang C, Chen Y, Liang X, Li S, Wang L. Bibliometric analysis of T-cells immunity in pulmonary hypertension from 1992 to 2022. Immun Inflamm Dis 2024; 12:e1280. [PMID: 38967362 PMCID: PMC11225084 DOI: 10.1002/iid3.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Adaptive immunity is an important disease mediator of pulmonary vascular remodeling during pulmonary hypertension (PH) development, especially T-cells lymphocytes. However, data for bibliometric analysis of T cell immunity in PH is currently vacant. This aimed to provide a comprehensive and visualized view of T-cells research in PH pathogenesis and to lay a solid foundation for further studies. METHODS The data was acquired from the Web of Science Core Collection database. Web of Science analytic tool was used to analysis the publication years, authors, journals, countries, and organizations. CiteSpace 6.2.R3, VOSviewer 1.6.16, and Scimago Graphica 1.0.35.0 were applied to conduct a visualization bibliometric analysis about authors, countries, institutions, journals, references, and keywords. RESULTS Nine hundred and eight publications from 1992 to 2022 were included in the analysis. The results showed that Humbert Marc was the most prolific author. American Journal of Physiology Lung Cellular and Molecular Physiology had the most related articles. The institution with the most articles was Udice French Research University. The United States was far ahead in the article output. Keywords analysis showed that "Pulmonary hypertension" was the most usually appeared keyword in the relevant literature, and included "T-cells", "Regulatory T cells", and "Activated T cell." "miRNA" of reference co-citation clustering analysis demonstrated the possible T-cell immunity activation mechanisms in PH. The most cited literature was published in the European Heart Journal by Galie N in 2016. The strongest citation burst of keyword is "gene expression" and terms such as "vascular remodeling," "growth," "proliferation," and "fibrosis" are among the list, indicating that T-cells interact with stromal vascular cells to induce pulmonary vascular remodeling. The strongest burst of cited reference is "Galie N, 2016." CONCLUSIONS T-cell immunity is an important pathogenesis mechanism for PH development, which may have interaction with miRNAs and stromal vascular cells, but the possible T-cell immunity activation mechanisms in PH need to be investigated further.
Collapse
Affiliation(s)
- Xian Chen
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Zhe Yan
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Qing Pan
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chunxia Zhang
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yakun Chen
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xuzhi Liang
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Shaomei Li
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lei Wang
- Department of Pulmonary and Critical Care MedicineSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
2
|
Ghani H, Pepke-Zaba J. Chronic Thromboembolic Pulmonary Hypertension: A Review of the Multifaceted Pathobiology. Biomedicines 2023; 12:46. [PMID: 38255153 PMCID: PMC10813488 DOI: 10.3390/biomedicines12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic thromboembolic pulmonary disease results from the incomplete resolution of thrombi, leading to fibrotic obstructions. These vascular obstructions and additional microvasculopathy may lead to chronic thromboembolic pulmonary hypertension (CTEPH) with increased pulmonary arterial pressure and pulmonary vascular resistance, which, if left untreated, can lead to right heart failure and death. The pathobiology of CTEPH has been challenging to unravel due to its rarity, possible interference of results with anticoagulation, difficulty in selecting the most relevant study time point in relation to presentation with acute pulmonary embolism (PE), and lack of animal models. In this article, we review the most relevant multifaceted cross-talking pathogenic mechanisms and advances in understanding the pathobiology in CTEPH, as well as its challenges and future direction. There appears to be a genetic background affecting the relevant pathological pathways. This includes genetic associations with dysfibrinogenemia resulting in fibrinolysis resistance, defective angiogenesis affecting thrombus resolution, and inflammatory mediators driving chronic inflammation in CTEPH. However, these are not necessarily specific to CTEPH and some of the pathways are also described in acute PE or deep vein thrombosis. In addition, there is a complex interplay between angiogenic and inflammatory mediators driving thrombus non-resolution, endothelial dysfunction, and vascular remodeling. Furthermore, there are data to suggest that infection, the microbiome, circulating microparticles, and the plasma metabolome are contributing to the pathobiology of CTEPH.
Collapse
Affiliation(s)
- Hakim Ghani
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | | |
Collapse
|
3
|
Duan A, Huang Z, Zhao Z, Zhao Q, Jin Q, Yan L, Zhang Y, Li X, Zhang S, Hu M, Gao L, An C, Luo Q, Liu Z. The potential of cystatin C as a predictive biomarker in pulmonary hypertension. BMC Pulm Med 2023; 23:311. [PMID: 37633906 PMCID: PMC10463899 DOI: 10.1186/s12890-023-02595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/04/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Cystatin C is a novel biomarker to identify renal dysfunction and cardiovascular risk. OBJECTIVE The aim of this study was to investigate the role of cystatin C in non-invasive risk prediction in a large cohort of patients with pre-capillary pulmonary hypertension (PH). METHOD We retrospectively analyzed pre-capillary PH patients with available cystatin C and hemodynamic data derived from right heart catheterization. RESULTS A total of 398 consecutive patients with confirmed pre-capillary PH were recruited from Fuwai Hospital between November 2020 and November 2021. Over a median duration of 282 days, 72 (18.1%) of these patients experienced clinical worsening. Cystatin C levels significantly correlated with cardiac index (r = -0.286, P < 0.001), mixed venous oxygen saturation (r = -0.216, P < 0.001), and tricuspid annular plane systolic excursion (r = -0.236, P < 0.001), and high cystatin C levels independently predicted a poor prognosis after adjusting potential confounders in different models (all P < 0.05). A three-group non-invasive risk model was constructed based on the combined assessment of the cystatin C and WHO-FC using dichotomous cut-off value. Those patients with higher cystatin C (≥ 1.0 mg/L) and a worse WHO-FC experienced the highest risk of endpoint occurrence. The predictive capacity of this model was comparable to that of an existing invasive risk stratification model (area under curve: 0.657 vs 0.643, P = 0.619). CONCLUSIONS Cystatin C levels were associated with disease severity and prognosis in patients with pre-capillary PH. A combination of high cystatin C and advanced WHO-FC identifies patients at particularly high risk of clinical deterioration.
Collapse
Affiliation(s)
- Anqi Duan
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Zhihua Huang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Zhihui Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Qing Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Qi Jin
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Yan
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Yi Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
- Center for Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xin Li
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Sicheng Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Meixi Hu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Luyang Gao
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Chenhong An
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China
| | - Qin Luo
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China.
| | - Zhihong Liu
- Center for Respiratory and Pulmonary Vascular Diseases, Department of Cardiology, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
4
|
Morita A, Yagi K, Asakura T, Namkoong H, Sato Y, Ogawa T, Kusumoto T, Suzuki S, Tanaka H, Lee H, Okamori S, Azekawa S, Nakagawara K, Kaji M, Nagao G, Funatsu Y, Kimizuka Y, Kamata H, Nishimura T, Ishii M, Fukunaga K, Hasegawa N. Longitudinal significance of six-minute walk test in patients with nontuberculous mycobacterial pulmonary disease: an observational study. BMC Pulm Med 2023; 23:247. [PMID: 37415094 DOI: 10.1186/s12890-023-02528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND The long-term exercise tolerance changes in patients with nontuberculous mycobacterial pulmonary disease (NTM-PD) are of great interest because of its chronic course. This study aimed to characterize the associations between changes over time in six-minute walking test (6MWT) parameters and clinical parameters in patients with NTM-PD. METHODS Overall, 188 patients with NTM-PD, visiting outpatient clinics at Keio University Hospital from April 2012 to March 2020 were included in the study. Data were collected using the St. George's Respiratory Questionnaire (SGRQ), pulmonary function test (PFT), blood tests, and the 6MWT at registration and at least once after that. The association of the anchors and clinical indicators with the 6MWT parameters was assessed. RESULTS The median age [interquartile range] of the patients was 67 [63-74] years. The median baseline six-minute walk distance (6MWD) and final Borg scale (FBS) were 413 [361-470] m and 1 [0-2], respectively. In the correlation analysis, ΔSGRQ total/year (yr), Δforced vital capacity (FVC, % predicted)/yr, Δforced expiratory volume in 1 s (FEV1, % predicted)/yr, and Δdiffusing capacity for carbon monoxide (DLCO, % predicted)/yr correlated with both Δ6MWD/yr and ΔFBS/yr in the longitudinal analysis (|Rho| > 0.20). When stratified into three quantiles of changes in each anchor, the 6MWT parameters worsened over time in the bottom 25% group by mixed-effects model. Specifically, Δ6MWD was affected by SGRQ activity, SGRQ impacts, PFT (FVC, FEV1, and DLCO), and C-reactive protein (CRP). ΔFBS was affected by all SGRQ components, total score, and PFT. Anchor scores and variables at baseline that worsened Δ6MWD were higher SGRQ scores, lower FVC (% predicted), lower DLCO (% predicted), higher Krebs von den Lungen-6, old age, and undergoing treatment at registration. Similarly, these clinical parameters and elevated CRP, excluding undergoing treatment at registration, worsened ΔFBS. CONCLUSIONS The decreased walking distance and exacerbation of dyspnea on exertion over time in patients with NTM-PD may reflect a deterioration of health-related quality of life and pulmonary function. Thus, the change in 6MWT over time can be used as an indicator to accurately assess the patient's condition and tailor their healthcare environment.
Collapse
Affiliation(s)
- Atsuho Morita
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University of Medicine, Tokyo, Japan
| | - Takunori Ogawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kusumoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masanori Kaji
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Genta Nagao
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Funatsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Internal Medicine, Tachikawa Hospital, Tokyo, Japan
| | - Yoshifumi Kimizuka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyasu Nishimura
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
- Keio University Health Center, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Li X, Zhang Y, Jin Q, Luo Q, Zhao Q, Yang T, Zeng Q, Duan A, Huang Z, Hu M, Zhang S, Gao L, Xiong C, Zhao Z, Liu Z. Development and Validation of a Nomogram for Balloon Pulmonary Angioplasty-Related Complications in Patients with Chronic Thromboembolic Pulmonary Hypertension. Rev Cardiovasc Med 2023; 24:72. [PMID: 39077502 PMCID: PMC11263984 DOI: 10.31083/j.rcm2403072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 07/31/2024] Open
Abstract
Background Balloon pulmonary angioplasty (BPA)-related complications are not uncommon and could contribute to perioperative mortality. However, there is a lack of a prediction model for BPA-related complications. Methods Data from consecutive patients diagnosed with chronic thromboembolic pulmonary hypertension (CTEPH) who underwent BPA were retrospectively analyzed. The primary outcome was BPA-related complications. The secondary outcomes were mortality and hemodynamics after BPA. Results A total of 207 patients with 614 BPA sessions were included. Complications occurred during 63 sessions (10.26%) in 49 patients. Hemoptysis or hemosputum (6.51%) was the most common complication, whereas pulmonary reperfusion edema was rare (0.49%). Multivariable logistic regression identified that disease duration, mean pulmonary arterial pressure (mPAP) and the proportion of occlusion lesions were correlated with BPA complications. A nomogram was constructed accordingly, which had the highest area under curve (0.703) and was superior to previously reported predictors [nomogram vs. mPAP, net reclassification index (95% confidence interval (CI)), 0.215 (0.002, 0.427), p = 0.047; integrated discrimination index (95% CI), 0.059 (0.010, 0.109), p = 0.018]. The nomogram was found to be accurate based on validation and calibration (slope 0.978, Bier score 0.163). After adjusting for the number of BPA sessions in multivariable linear regression, the occurrence of complications was not associated with hemodynamic improvement after BPA. The 3-year survival was also comparable between patients with and without complications (98.0% vs. 94.8%, log-rank p = 0.503). Conclusions The nomogram, comprising mPAP, the proportion of occlusion lesions and disease duration, could better predict BPA-related complications than previously reported single parameters. Distinctively, the occurrence of complications did not impair the beneficial impact of BPA on hemodynamics and survival. The occurrence of complications should not discourage patients from continuing BPA sessions.
Collapse
Affiliation(s)
- Xin Li
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Yi Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Qi Jin
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 200032 Shanghai, China
| | - Qin Luo
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Qing Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Tao Yang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Qixian Zeng
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Anqi Duan
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Zhihua Huang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Meixi Hu
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Sicheng Zhang
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Luyang Gao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Changming Xiong
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Zhihui Zhao
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| | - Zhihong Liu
- Center for Respiratory and Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| |
Collapse
|
6
|
Wang S, Guo ZY, Sun XX, Yuan P, Zhao QH, Wu WH, Qiu HL, Luo CJ, Gong SG, Li HT, Zhang R, He J, Wang L, Liu JM, Guo J, Jiang R. Differences in disease severity and prognosis of exercise-induced right-to-left shunt between idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension patients. Front Cardiovasc Med 2022; 9:976730. [PMID: 36578835 PMCID: PMC9791184 DOI: 10.3389/fcvm.2022.976730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Objective Whether exercise-induced venous-to-systemic shunt (EIS) during cardiopulmonary exercise testing (CPET) has different manifestations or characteristics in idiopathic pulmonary arterial hypertension (IPAH) and chronic thromboembolic pulmonary hypertension (CTEPH) patients remains unknown. We explored the differences in hemodynamics, echocardiography, and prognosis between IPAH and CTEPH patients with and without EIS. Methods We conducted a retrospective cross-sectional cohort study and included 161 PH patients at Shanghai Pulmonary Hospital. Demographic, echocardiography, pulmonary hemodynamic, and CPET variables were compared between patients with and without EIS stratified by IPAH and CTEPH. EIS was determined by CPET. Binary logistic regression analyses were performed to explore independent influencing factors of EIS. Cox survival analysis was used to quantify the impact of EIS on the prognosis of patients. Results Exercise-induced venous-to-systemic shunt was found in approximately 17.4% of 86 IPAH patients and 20% of 75 CTEPH patients. All-cause mortality occurred in 43 (26.7%) patients during a median follow-up of 6.5 years. Compared with those without EIS, patients with EIS had higher peak end-tidal O2 and lower VO2/VE and tricuspid annular plane systolic excursion (TAPSE). Among the IPAH patients, EIS was associated with lower cardiac output, cardiac index, mixed venous oxygen saturation, VO2/VE, and TAPSE and higher VE/VCO2 and right ventricular end-diastolic transverse diameter. Logistic regression analysis indicated that VO2/VE was an independent factor influencing whether IPAH patients developed EIS during CPET. Cox logistic regression indicated that female IPAH patients or IPAH patients with higher VO2/VE and EIS had a better prognosis. Female IPAH patients had better 10-year survival. In IPAH patients without EIS, patients with higher VO2/VE had better 10-year survival. However, compared with CTEPH patients without EIS, those with EIS had similar echocardiographic, hemodynamic, CPET parameter results and 10-year survival. Conclusion Exercise-induced venous-to-systemic shunt exhibits different profiles among IPAH and CTEPH patients. Among IPAH patients, those with EIS had worse peak end-tidal O2, VO2/VE, and TAPSE than those without EIS. VO2/VE was an independent factor of EIS among IPAH patients. IPAH patients with EIS, female sex or higher VO2/VE had better survival. However, the association between EIS and PAH severity or prognosis in CTEPH patients needs to be further explored.
Collapse
Affiliation(s)
- Shang Wang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zi-Yan Guo
- Department of Cardiovascular Intensive Care Unit, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China
| | - Xing-Xing Sun
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qin-Hua Zhao
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Hui Wu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ling Qiu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ci-Jun Luo
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Su-Gang Gong
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui-Ting Li
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Zhang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lan Wang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Ming Liu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Guo
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China,Jian Guo,
| | - Rong Jiang
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China,*Correspondence: Rong Jiang,
| |
Collapse
|
7
|
Central versus Peripheral CTEPH-Clinical and Hemodynamic Specifications. Medicina (B Aires) 2022; 58:medicina58111538. [PMID: 36363494 PMCID: PMC9696046 DOI: 10.3390/medicina58111538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
Background and Objectives: Chronic thromboembolic pulmonary hypertension (CTEPH) is a chronic progressive disease, resulting from persistent arterial obstruction combined with small-vessel remodeling. Central and peripheral CTEPH are distinguished, according to the dominant lesion's location. This is important for surgical or percutaneous interventional assessment or for medical treatment. Material and Methods: Eighty-one patients (51 male/30 female) with confirmed CTEPH were analyzed, while the CENTRAL type included 51 patients (63%) and the PERIPHERAL type 30 patients (37%). Results: A significant difference in CENTRAL type vs. PERIPHERAL type was determined in gender (male 72.5% vs. 46.7%; p = 0.0198). No difference was found in age, functional status, or echocardiographic parameters. Invasive hemodynamic parameters showed a significant difference in mean pulmonary arterial pressure (46 vs. 58 mmHg; p = 0.0002), transpulmonary gradient (34 vs. 47 mmHg; p = 0.0005), and cardiac index (2.04 vs. 2.5 L.min.m2; p = 0.02) but not in pulmonary vascular resistance. Risk factors showed a significant difference only in acute pulmonary embolism (93.8% vs. 60%; p = 0.0002) and malignancy (2% vs. 13.3%; p = 0.0426). Conclusions: Our study showed hemodynamic differences between CENTRAL type vs. PERIPHERAL type CTEPH with a worse hemodynamic picture in CENTRAL form. This may indicate a different pathophysiological response and/or possible additional influences contributing especially to the peripheral pulmonary bed affection.
Collapse
|
8
|
Boxhammer E, Scharinger B, Kaufmann R, Brandtner H, Schmidbauer L, Kammler J, Kellermair J, Reiter C, Akbari K, Hammerer M, Blessberger H, Steinwender C, Hergan K, Hoppe UC, Lichtenauer M, Hecht S. Comparability between Computed Tomography Morphological Vascular Parameters and Echocardiography for the Assessment of Pulmonary Hypertension in Patients with Severe Aortic Valve Stenosis-Results of a Multi-Center Study. Diagnostics (Basel) 2022; 12:2363. [PMID: 36292052 PMCID: PMC9600691 DOI: 10.3390/diagnostics12102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Computed tomography (CT) of the aorta and cardiac vessels, which is performed in patients with severe aortic valve stenosis (AS) before transcatheter aortic valve replacement (TAVR), offers the possibility of non-invasive detection of pulmonary hypertension (PH), for example, by determining the diameter of the main pulmonary artery (PA), the right pulmonary artery (RPA) or the left pulmonary artery (LPA). An improvement of the significance of these radiological parameters is often achieved by indexing to the body surface area (BSA). The aim of this study was to compare different echocardiographic systolic pulmonary artery pressure (sPAP) values with radiological data in order to define potential clinical cut-off values for the presence or absence of PH. Methods: A total of 138 patients with severe AS undergoing TAVR underwent pre-interventional transthoracic echocardiography with determination of sPAP values and performance of CT angiography (CTA) of the aorta and femoral arteries. Radiologically, the PA, RPA, LPA, and ascending aorta (AA) diameters were obtained. Vascular diameters were not only indexed to BSA but also ratios were created with AA diameter (for example PA/AA-ratio). From these CT-derived vascular parameters, AUROC curves were obtained regarding the prediction of different sPAP values (sPAP 40−45−50 mmHg) and finally correlation analyses were calculated. Results: The best AUROC and correlation analyses were generally obtained at an sPAP ≥ 40 mmHg. When considering diameters alone, the PA diameter was superior to the RPA and LPA. Indexing to BSA generally increased the diagnostic quality of the parameters, and finally, in a synopsis of all results, PA/BSA had the best AUC 0.741 (95% CI 0.646−0. 836; p < 0.001; YI 0.39; sensitivity 0.87; specificity 0.52) and Spearman’s correlation coefficient (r = 0.408; p < 0.001) at an sPAP of ≥40 mmHg. Conclusions: Features related to pulmonary hypertension are fast and easily measurable on pre-TAVR CT and offer great potential regarding non-invasive detection of pulmonary hypertension in patients with severe AS and can support the echocardiographic diagnosis. In this study, the diameter of the main pulmonary artery with the additionally determined ratios were superior to the values of the right and left pulmonary artery. Additional indexing to body surface area and thus further individualization of the parameters with respect to height and weight can further improve the diagnostic quality.
Collapse
Affiliation(s)
- Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Bernhard Scharinger
- Department of Radiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Reinhard Kaufmann
- Department of Radiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Herwig Brandtner
- Department of Radiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Lukas Schmidbauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Jürgen Kammler
- Department of Cardiology, Kepler University Hospital, Medical Faculty of the Johannes Kepler University Linz, 4020 Linz, Austria
| | - Jörg Kellermair
- Department of Cardiology, Kepler University Hospital, Medical Faculty of the Johannes Kepler University Linz, 4020 Linz, Austria
| | - Christian Reiter
- Department of Cardiology, Kepler University Hospital, Medical Faculty of the Johannes Kepler University Linz, 4020 Linz, Austria
| | - Kaveh Akbari
- Department of Radiology, Johannes Kepler University Hospital Linz, 4020 Linz, Austria
| | - Matthias Hammerer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Hermann Blessberger
- Department of Cardiology, Kepler University Hospital, Medical Faculty of the Johannes Kepler University Linz, 4020 Linz, Austria
| | - Clemens Steinwender
- Department of Cardiology, Kepler University Hospital, Medical Faculty of the Johannes Kepler University Linz, 4020 Linz, Austria
| | - Klaus Hergan
- Department of Radiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Stefan Hecht
- Department of Radiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|