1
|
Ismail TAM, Elshafey N, Talat SE, Saif ME, Hegab AM, Dossouvi KM, Alharbi HM, Elkelish A, Ghany KAE. Comparative in silico and in vivo study of the antioxidant activity of lactoferrin, Geobacillus stearothermophilus, and Lactobacillus delbrueckii subsp. lactis against Rotavirus infection in male mice. BMC Microbiol 2025; 25:117. [PMID: 40038589 DOI: 10.1186/s12866-025-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Rotavirus is a major cause of pediatric gastroenteritis, for which effective treatments are limited. This study investigates the antioxidant and antiviral potential of lactoferrin, Geobacillus stearothermophilus, and Lactobacillus delbrueckii subsp. lactis against Rotavirus infection. In this study, Geobacillus stearothermophilus and Lactobacillus delbrueckii subsp. lactis were isolated from Hammam Pharon soil and milk cheese, respectively, and identified using molecular techniques with accession numbers PP758390 and PP758383. The antioxidant effect against DPPH showed that lactoferrin exhibited the strongest scavenging ability, followed by Geobacillus stearothermophilus and Lactobacillus delbrueckii subsp. lactis. In vivo experiments involved administering lactoferrin, Geobacillus stearothermophilus, and Lactobacillus delbrueckii subsp. lactis in the drinking water of young mice for three days, followed by Rotavirus infection on the fourth day and sacrifice on the fifth day. The results demonstrated that lactoferrin significantly reduced the pathogenic effects of Rotavirus, as indicated by the normalization of inflammatory cytokines (TNF-α and IL-6) in the serum (p ≤ 0.001). Histological examination of small intestinal sections from Rotavirus-infected mice revealed extensive destruction of villus structures, while mice treated with lactoferrin showed no pathological changes compared to the control group. Geobacillus stearothermophilus-treated mice exhibited less pathological alteration and Lactobacillus delbrueckii subsp. lactis-treated mice showed mild pathological changes. Additionally, molecular docking studies indicated that bacteriocin (a bacterial protein) exhibited the highest binding affinity for the Rotavirus outer membrane protein (VP6) at -261.92 kcal/mol, outperforming lactoferrin (-229.32 kcal/mol). Additionally, bacteriocin's active compounds, turimicin (-7.9 kcal/mol) and lactin (-6.5 kcal/mol), also showed strong binding to VP6, suggesting their potential as therapeutic agents against Rotavirus. In conclusion, this study highlights the significant antiviral potential of lactoferrin against Rotavirus, demonstrating its ability to mitigate pathological changes and normalize inflammatory responses in infected mice. The findings also suggest that bacteriocins, particularly those with high binding affinities to Rotavirus proteins, could serve as promising candidates for therapeutic interventions against Rotavirus infections.
Collapse
Affiliation(s)
- Tarek A M Ismail
- Microbiology Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research, Cairo, Egypt
| | - Naglaa Elshafey
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish, 45511, Egypt
| | - Shehab E Talat
- Microbiology Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research, Cairo, Egypt
| | - Mona E Saif
- Histology Department, Egyptian drug authority (EDA), Formerly National Organization of Drug Control and Research, Cairo, Egypt
| | - Amany Mohammed Hegab
- Developmental Pharmacology and Acute Toxicity Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research, Cairo, Egypt
| | | | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Khalid Abd El Ghany
- Microbiology Department, Egyptian Drug Authority (EDA), Formerly National Organization of Drug Control and Research, Cairo, Egypt
| |
Collapse
|
2
|
Nami Y, Barghi A, Shahgolzari M, Salehian M, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Sci Nutr 2025; 13:e4658. [PMID: 39803224 PMCID: PMC11717059 DOI: 10.1002/fsn3.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. According to the International Society of Sports Nutrition (ISSN), probiotic supplementation can optimize the health, performance, and recovery of athletes at all stages of their careers. Recent research suggests that probiotics can improve immune system functions, reduce gastrointestinal distress, and increase gut permeability in athletes. Additionally, probiotics may provide athletes with secondary health benefits that could positively affect athletic performance through enhanced recovery from fatigue, improved immune function, and maintenance of healthy gastrointestinal tract function. The integration of some probiotic strains into athletes' diets and the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. In summary, probiotics can be beneficial for athletes at all stages of their careers, from amateur to professional. This paper reviews the progress of research on the role of probiotic supplementation in improving energy metabolism and immune system functions, reducing gastrointestinal distress, and enhancing recovery from fatigue in athletes at different levels.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West RegionAgricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO)TabrizIran
| | - Anahita Barghi
- Institute of Agricultural Life ScienceDong‐A UniversityBusanSouth Korea
| | - Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Melika Salehian
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
3
|
Aykut MN, Erdoğan EN, Çelik MN, Gürbüz M. An Updated View of the Effect of Probiotic Supplement on Sports Performance: A Detailed Review. Curr Nutr Rep 2024; 13:251-263. [PMID: 38470560 PMCID: PMC11133216 DOI: 10.1007/s13668-024-00527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
PURPOSE OF REVIEW Modulation of the host microbiota through probiotics has been shown to have beneficial effects on health in the growing body of research. Exercise increases the amount and diversity of beneficial microorganisms in the host microbiome. Although low- and moderate-intensity exercise has been shown to reduce physiological stress and improve immune function, high-intensity prolonged exercise can suppress immune function and reduce microbial diversity due to intestinal hypoperfusion. The effect of probiotic supplementation on sports performance is still being studied; however, questions remain regarding the mechanisms of action, strain used, and dose. In this review, the aim was to investigate the effects of probiotic supplements on exercise performance through modulation of gut microbiota and alleviation of GI symptoms, promotion of the immune system, bioavailability of nutrients, and aerobic metabolism. RECENT FINDINGS Probiotic supplementation may improve sports performance by reducing the adverse effects of prolonged high-intensity exercise. Although probiotics have been reported to have positive effects on sports performance, information about the microbiome and nutrition of athletes has not been considered in most current studies. This may have limited the evaluation of the effects of probiotic supplementation on sports performance.
Collapse
Affiliation(s)
- Miray Nur Aykut
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Esma Nur Erdoğan
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey
| | - Menşure Nur Çelik
- Department of Nutrition and Dietetics, Ondokuz Mayıs University, Samsun, Turkey
| | - Murat Gürbüz
- Department of Nutrition and Dietetics, Trakya University, Edirne, Turkey.
| |
Collapse
|
4
|
Lei Y, Xu M, Huang N, Yuan Z. Meta-analysis of the effect of probiotics or synbiotics on the risk factors in patients with coronary artery disease. Front Cardiovasc Med 2023; 10:1154888. [PMID: 37600034 PMCID: PMC10436219 DOI: 10.3389/fcvm.2023.1154888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Objective The objective of this study was to study the effect of probiotics or synbiotics on the risk factors for coronary artery disease (CAD) in the context of conventional drug therapy for CAD. Methods The literature on probiotics or synbiotics for the treatment of CAD was collected from PubMed, Scopus, Web of Science, Embase, and Cochrane Library. The search period was conducted on November 5, 2022, and the search covered all literature before November 5, 2022. The included literature consisted of randomized controlled trials of probiotics or synbiotics for CAD, and a meta-analysis was performed using Stata 14 software and RevMan 5.4 software. Results The meta-analysis explored the effect of probiotics or synbiotics on the risk factors for coronary artery lesions in a treatment setting with conventional medications for CAD. After a rigorous literature screening process, 10 studies were finally included for data consolidation to objectively evaluate the effect of probiotics or synbiotics on coronary lesions. The results of this study showed that the addition of probiotics or synbiotics to conventional medications for CAD reduced the levels of low-density lipoprotein cholesterol [weighted mean difference (WMD) -9.13 (-13.17, -5.09)], fasting glucose (FPG) [WMD -13.60 (-23.57, -3.62)], and hypersensitive C-reactive protein (hs-CRP) [standardized mean difference (SMD) -0.60 (-0.83, -0.37)] and increased the levels of high-density lipoprotein cholesterol (HDL-C) [WMD 1.94 (0.32, 3.57)], nitric oxide (NO) [WMD 5.38 (3.23, 7.54)] but did not affect the triglyceride (TG) level [WMD -13.41 (-28.03, 1.21)], systolic blood pressure (SBP) [WMD -0.88 (-3.72, 1.96)], or diastolic blood pressure (DBP) [WMD -0.21 (-2.19, 1.76)]. Conclusion Adding probiotics or synbiotics to conventional medications for CAD may improve patient prognosis. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022362711.
Collapse
Affiliation(s)
- Yunzhen Lei
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| | - Min Xu
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| | - Nanqu Huang
- Drug Clinical Trial Institution, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| | - Zhengqiang Yuan
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| |
Collapse
|
5
|
Aguinaga-Ontoso I, Guillen-Aguinaga S, Guillen-Aguinaga L, Alas-Brun R, Guillen-Grima F. Effects of Nutrition Interventions on Athletic Performance in Soccer Players: A Systematic Review. Life (Basel) 2023; 13:1271. [PMID: 37374054 PMCID: PMC10301089 DOI: 10.3390/life13061271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND More than 270 million participants and 128,893 professional players play soccer. Although UEFA recommendations for nutrition in elite football exist, implementing these guidelines among professional and semiprofessional soccer players remains suboptimal, emphasizing the need for targeted and individualized nutritional strategies to improve adherence to established recommendations. METHODS We conducted a comprehensive search in PubMed, Scopus, Web of Science, and clinical trial registers. Inclusion criteria focused on professional or semiprofessional soccer players, nutrition or diet interventions, performance improvement outcomes, and randomized clinical trial study types. We assessed quality using the Risk of Bias 2 (RoB 2) tool. We identified 16 eligible articles involving 310 participants. No nutritional interventions during the recovery period effectively improved recovery. However, several performance-based interventions showed positive effects, such as tart cherry supplementation, raw pistachio nut kernels, bicarbonate and mineral ingestion, creatine supplementation, betaine consumption, symbiotic supplements, and a high-carbohydrate diet. These interventions influenced various aspects of soccer performance, including endurance, speed, agility, strength, power, explosiveness, and anaerobic capacity. CONCLUSIONS Specific strategies, such as solutions with bicarbonate and minerals, high carbohydrate diets, and supplements like creatine, betaine, and tart cherry, can enhance the performance of professional soccer players. These targeted nutritional interventions may help optimize performance and provide the competitive edge required in professional soccer. We did not find any dietary interventions that could enhance recovery.
Collapse
Affiliation(s)
- Ines Aguinaga-Ontoso
- Departament of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (R.A.-B.)
- Area of Epidemiology and Public Health, Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain
| | - Sara Guillen-Aguinaga
- Departament of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (R.A.-B.)
| | | | - Rosa Alas-Brun
- Departament of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (R.A.-B.)
| | - Francisco Guillen-Grima
- Departament of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (R.A.-B.)
- Area of Epidemiology and Public Health, Healthcare Research Institute of Navarre (IdiSNA), 31008 Pamplona, Spain
- Department of Preventive Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Wiącek J, Karolkiewicz J. Different Approaches to Ergogenic, Pre-, and Probiotic Supplementation in Sports with Different Metabolism Characteristics: A Mini Review. Nutrients 2023; 15:nu15061541. [PMID: 36986269 PMCID: PMC10056922 DOI: 10.3390/nu15061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Sport disciplines with different metabolic characteristics require different dietary approaches. Bodybuilders or sprinters ("anaerobic" athletes) need a high-protein diet (HPD) in order to activate muscle protein synthesis after exercise-induced muscle damage and use nitric oxide enhancers (such as citrulline and nitrates) to increase vasodilatation, whereas endurance athletes, such as runners or cyclists ("aerobic" athletes), prefer a high-carbohydrate diet (HCHD), which aims to restore the intramuscular glycogen, and supplements containing buffering agents (such as sodium bicarbonate and beta-alanine). In both cases, nutrient absorption, neurotransmitter and immune cell production and muscle recovery depend on gut bacteria and their metabolites. However, there is still insufficient data on the impact of an HPD or HCHD in addition to supplements on "anaerobic" and "aerobic" athletes' gut microbiota and how this impact could be affected by nutritional interventions such as pre- and probiotic therapy. Additionally, little is known about the role of probiotics in the ergogenic effects of supplements. Based on the results of our previous research on an HPD in amateur bodybuilders and an HCHD in amateur cyclists, we reviewed human and animal studies on the effects of popular supplements on gut homeostasis and sport performance.
Collapse
Affiliation(s)
- Jakub Wiącek
- Food and Nutrition Department, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Joanna Karolkiewicz
- Food and Nutrition Department, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| |
Collapse
|
7
|
Fernández-Lázaro D, Sánchez-Serrano N, Rabail R, Aadil RM, Mielgo-Ayuso J, Radesca Fabiano K, Garrosa E. Is Probiotics Supplementation an Appropriate Strategy to Modulate Inflammation in Physically Active Healthy Adults or Athletes? A Systematic Review. APPLIED SCIENCES 2023; 13:3448. [DOI: 10.3390/app13063448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Supplementation with probiotics in sports is on the rise with the aim of improving health and athletic performance. Since intense exercise-induced muscle damage leads to an inflammatory process by increasing circulating inflammatory cytokines, probiotic supplementation may modulate and correct the inflammation. We systematically reviewed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in the Scopus, Web of Science, and Medline databases for the 10 years until January 2023. This review aimed to evaluate probiotic supplementation as a strategy for modulating inflammation in healthy physically active adults or athletes. Studies were indexed to assess the effect of probiotic supplementation on cytokine behavior in the inflammatory response in physically active individuals. Of the 136 studies identified in the search, 13 met the inclusion criteria, and their quality was assessed using the McMaster Critical Review Form. The results of these trials indicated a significant improvement in inflammatory cytokines in probiotic-supplemented participants, with a significant increase in anti-inflammatory cytokines (IL-10) and a significant decrease in proinflammatory cytokines (IL-6, TNF-α, and IL-8). This would create uncertainty about probiotics’ effect on interleukins’ behavior after exercise, and further clinical trials are needed to establish a solid basis.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Nerea Sánchez-Serrano
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Microbiology Unit of Soria University Assistance Complex (CAUSO), Santa Bárbara Hospital, Castille and Leon Health (SACyL), 42003 Soria, Spain
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Krizia Radesca Fabiano
- Department of Sports Sciences, Faculty of Physical Activity and Sports Sciences, European University of Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Evelina Garrosa
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
8
|
González-Chávez SA, López-Loeza SM, Acosta-Jiménez S, Cuevas-Martínez R, Pacheco-Silva C, Chaparro-Barrera E, Pacheco-Tena C. Low-Intensity Physical Exercise Decreases Inflammation and Joint Damage in the Preclinical Phase of a Rheumatoid Arthritis Murine Model. Biomolecules 2023; 13:biom13030488. [PMID: 36979423 PMCID: PMC10046494 DOI: 10.3390/biom13030488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Lifestyle modifications in preclinical Rheumatoid Arthritis (RA) could delay the ongoing pathogenic immune processes and potentially prevent its onset. Physical exercise (PE) benefits RA patients; however, its impact in reducing the risk of developing RA has scarcely been studied. The objective was to describe the effects of low-intensity PE applied at the disease’s preclinical phase on the joints of DBA/1 mice with collagen-induced arthritis (CIA). Twelve mice with CIA were randomly distributed into two groups: the CIA-Ex group, which undertook treadmill PE, and the CIA-NoEx, which was not exercised. The effects of PE were evaluated through clinical, histological, transcriptomics, and immunodetection analyses in the mice’s hind paws. The CIA-Ex group showed lower joint inflammation and damage and a decreased expression of RA-related genes (Tnf Il2, Il10, Il12a, IL23a, and Tgfb1) and signaling pathways (Cytokines, Chemokines, JAK-STAT, MAPK, NF-kappa B, TNF, and TGF-beta). TNF-α expression was decreased by PE in the inflamed joints. Low-intensity PE in pre-arthritic CIA reduced the severity through joint down-expression of proinflammatory genes and proteins. Knowledge on the underlying mechanisms of PE in preclinical arthritis and its impact on reducing the risk of developing RA is still needed.
Collapse
|
9
|
Vetráková A, Chovanová RK, Rechtoríková R, Krajčíková D, Barák I. Bacillus subtilis spores displaying RBD domain of SARS-CoV-2 spike protein. Comput Struct Biotechnol J 2023; 21:1550-1556. [PMID: 36778063 PMCID: PMC9904849 DOI: 10.1016/j.csbj.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Bacillus subtilis spores are considered to be efficient and useful vehicles for the surface display and delivery of heterologous proteins. In this study, we prepared recombinant spores with the receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein displayed on their surface in fusion with the CotZ or CotY spore coat proteins as a possible tool for the development of an oral vaccine against the SARS-CoV-2 virus. The RBD was attached to the N-terminus or C-terminus of the coat proteins. We also directly adsorbed non-recombinantly produced RBD to the spore surface. SDS-PAGE, western blot and fluorescence microscopy were used to analyze RBD surface expression on purified spores. Results obtained from both display systems, recombinant and non-recombinant, demonstrated that RBD was present on the spore surfaces.
Collapse
|
10
|
Rauch CE, Mika AS, McCubbin AJ, Huschtscha Z, Costa RJS. Effect of prebiotics, probiotics, and synbiotics on gastrointestinal outcomes in healthy adults and active adults at rest and in response to exercise-A systematic literature review. Front Nutr 2022; 9:1003620. [PMID: 36570133 PMCID: PMC9768503 DOI: 10.3389/fnut.2022.1003620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A systematic literature search was undertaken to assess the impact of pre-, pro-, and syn-biotic supplementation on measures of gastrointestinal status at rest and in response to acute exercise. Methods Six databases (Ovid MEDLINE, EMBASE, Cinahl, SportsDISCUS, Web of Science, and Scopus) were used. Included were human research studies in healthy sedentary adults, and healthy active adults, involving supplementation and control or placebo groups. Sedentary individuals with non-communicable disease risk or established gastrointestinal inflammatory or functional diseases/disorders were excluded. Results A total of n = 1,204 participants were included from n = 37 papers reported resting outcomes, and n = 13 reported exercise-induced gastrointestinal syndrome (EIGS) outcomes. No supplement improved gastrointestinal permeability or gastrointestinal symptoms (GIS), and systemic endotoxemia at rest. Only modest positive changes in inflammatory cytokine profiles were observed in n = 3/15 studies at rest. Prebiotic studies (n = 4/5) reported significantly increased resting fecal Bifidobacteria, but no consistent differences in other microbes. Probiotic studies (n = 4/9) increased the supplemented bacterial species-strain. Only arabinoxylan oligosaccharide supplementation increased total fecal short chain fatty acid (SCFA) and butyrate concentrations. In response to exercise, probiotics did not substantially influence epithelial injury and permeability, systemic endotoxin profile, or GIS. Two studies reported reduced systemic inflammatory cytokine responses to exercise. Probiotic supplementation did not substantially influence GIS during exercise. Discussion Synbiotic outcomes resembled probiotics, likely due to the minimal dose of prebiotic included. Methodological issues and high risk of bias were identified in several studies, using the Cochrane Risk of Bias Assessment Tool. A major limitation in the majority of included studies was the lack of a comprehensive approach of well-validated biomarkers specific to gastrointestinal outcomes and many included studies featured small sample sizes. Prebiotic supplementation can influence gut microbial composition and SCFA concentration; whereas probiotics increase the supplemented species-strain, with minimal effect on SCFA, and no effect on any other gastrointestinal status marker at rest. Probiotic and synbiotic supplementation does not substantially reduce epithelial injury and permeability, systemic endotoxin and inflammatory cytokine profiles, or GIS in response to acute exercise.
Collapse
Affiliation(s)
- Christopher E. Rauch
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alice S. Mika
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alan J. McCubbin
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Zoya Huschtscha
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia,*Correspondence: Ricardo J. S. Costa
| |
Collapse
|