1
|
Marković S, Jadranin M, Miladinović Z, Gavrilović A, Avramović N, Takić M, Tasic L, Tešević V, Mandić B. LC-HRMS Lipidomic Fingerprints in Serbian Cohort of Schizophrenia Patients. Int J Mol Sci 2024; 25:10266. [PMID: 39408605 PMCID: PMC11476971 DOI: 10.3390/ijms251910266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Schizophrenia (SCH) is a major mental illness that causes impaired cognitive function and long-term disability, so the requirements for reliable biomarkers for early diagnosis and therapy of SCH are essential. The objective of this work was an untargeted lipidomic study of serum samples from a Serbian cohort including 30 schizophrenia (SCH) patients and 31 non-psychiatric control (C) individuals by applying liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS) and chemometric analyses. Principal component analysis (PCA) of all samples indicated no clear separation between SCH and C groups but indicated clear gender separation in the C group. Multivariate statistical analyses (PCA and orthogonal partial least squares discriminant analysis (OPLS-DA)) of gender-differentiated SCH and C groups established forty-nine differential lipids in the differentiation of male SCH (SCH-M) patients and male controls (C-M), while sixty putative biomarkers were identified in the differentiation of female SCH patients (SCH-F) and female controls (C-F). Lipidomic study of gender-differentiated groups, between SCH-M and C-M and between SCH-F and C-F groups, confirmed that lipids metabolism was altered and the content of the majority of the most affected lipid classes, glycerophospholipids (GP), sphingolipids (SP), glycerolipids (GL) and fatty acids (FA), was decreased compared to controls. From differential lipid metabolites with higher content in both SCH-M and SCH-F patients groups compared to their non-psychiatric controls, there were four common lipid molecules: ceramides Cer 34:2, and Cer 34:1, lysophosphatidylcholine LPC 16:0 and triacylglycerol TG 48:2. Significant alteration of lipids metabolism confirmed the importance of metabolic pathways in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Suzana Marković
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
- University of Belgrade—Faculty of Medicine, Institute of Forensic Medicine, Deligradska 31a, 11000 Belgrade, Serbia
| | - Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Zoran Miladinović
- Institute of General and Physical Chemistry, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Aleksandra Gavrilović
- Special Hospital for Psychiatric Diseases “Kovin”, Cara Lazara 253, 26220 Kovin, Serbia;
| | - Nataša Avramović
- University of Belgrade—Faculty of Medicine, Institute of Medical Chemistry, Višegradska 26, 11000 Belgrade, Serbia;
| | - Marija Takić
- University of Belgrade—Institute for Medical Research, National Institute of Republic of Serbia, Center of Research Excellence for Nutrition and Metabolism, Group for Nutrition and Metabolism, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Ljubica Tasic
- Institute of Chemistry, Organic Chemistry Department, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970, SP, Brazil;
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
| |
Collapse
|
2
|
Krzyściak W, Bystrowska B, Karcz P, Chrzan R, Bryll A, Turek A, Mazur P, Śmierciak N, Szwajca M, Donicz P, Furman K, Pilato F, Kozicz T, Popiela T, Pilecki M. Association of Blood Metabolomics Biomarkers with Brain Metabolites and Patient-Reported Outcomes as a New Approach in Individualized Diagnosis of Schizophrenia. Int J Mol Sci 2024; 25:2294. [PMID: 38396971 PMCID: PMC10888632 DOI: 10.3390/ijms25042294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Given its polygenic nature, there is a need for a personalized approach to schizophrenia. The aim of the study was to select laboratory biomarkers from blood, brain imaging, and clinical assessment, with an emphasis on patients' self-report questionnaires. Metabolomics studies of serum samples from 51 patients and 45 healthy volunteers, based on the liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS), led to the identification of 3 biochemical indicators (cortisol, glutamate, lactate) of schizophrenia. These metabolites were sequentially correlated with laboratory tests results, imaging results, and clinical assessment outcomes, including patient self-report outcomes. The hierarchical cluster analysis on the principal components (HCPC) was performed to identify the most homogeneous clinical groups. Significant correlations were noted between blood lactates and 11 clinical and 10 neuroimaging parameters. The increase in lactate and cortisol were significantly associated with a decrease in immunological parameters, especially with the level of reactive lymphocytes. The strongest correlations with the level of blood lactate and cortisol were demonstrated by brain glutamate, N-acetylaspartate and the concentrations of glutamate and glutamine, creatine and phosphocreatine in the prefrontal cortex. Metabolomics studies and the search for associations with brain parameters and self-reported outcomes may provide new diagnostic evidence to specific schizophrenia phenotypes.
Collapse
Affiliation(s)
- Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Faculty of Health Sciences, 31-126 Krakow, Poland;
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Aleksander Turek
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Mazur
- Department of Medical Diagnostics, Jagiellonian University Medical College, Faculty of Pharmacy, 30-688 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Paulina Donicz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Katarzyna Furman
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, Faculty of Medicine, 31-503 Krakow, Poland; (R.C.); (A.B.); (T.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (A.T.); (N.Ś.); (M.S.); (P.D.); (K.F.); (M.P.)
| |
Collapse
|
3
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
4
|
Liu M, Ma W, He Y, Sun Z, Yang J. Recent Progress in Mass Spectrometry-Based Metabolomics in Major Depressive Disorder Research. Molecules 2023; 28:7430. [PMID: 37959849 PMCID: PMC10647556 DOI: 10.3390/molecules28217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness with a heavy social burden, but its underlying molecular mechanisms remain unclear. Mass spectrometry (MS)-based metabolomics is providing new insights into the heterogeneous pathophysiology, diagnosis, treatment, and prognosis of MDD by revealing multi-parametric biomarker signatures at the metabolite level. In this comprehensive review, recent developments of MS-based metabolomics in MDD research are summarized from the perspective of analytical platforms (liquid chromatography-MS, gas chromatography-MS, supercritical fluid chromatography-MS, etc.), strategies (untargeted, targeted, and pseudotargeted metabolomics), key metabolite changes (monoamine neurotransmitters, amino acids, lipids, etc.), and antidepressant treatments (both western and traditional Chinese medicines). Depression sub-phenotypes, comorbid depression, and multi-omics approaches are also highlighted to stimulate further advances in MS-based metabolomics in the field of MDD research.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
5
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
6
|
Costa AC, Riça LB, van de Bilt M, Zandonadi FS, Gattaz WF, Talib LL, Sussulini A. Application of Lipidomics in Psychiatry: Plasma-Based Potential Biomarkers in Schizophrenia and Bipolar Disorder. Metabolites 2023; 13:metabo13050600. [PMID: 37233641 DOI: 10.3390/metabo13050600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, we obtained a lipidomic profile of plasma samples from drug-naïve patients with schizophrenia (SZ) and bipolar disorder (BD) in comparison to healthy controls. The sample cohort consisted of 30 BD and 30 SZ patients and 30 control individuals. An untargeted lipidomics strategy using liquid chromatography coupled with high-resolution mass spectrometry was employed to obtain the lipid profiles. Data were preprocessed, then univariate (t-test) and multivariate (principal component analysis and orthogonal partial least squares discriminant analysis) statistical tools were applied to select differential lipids, which were putatively identified. Afterward, multivariate receiver operating characteristic tests were performed, and metabolic pathway networks were constructed, considering the differential lipids. Our results demonstrate alterations in distinct lipid pathways, especially in glycerophospholipids, sphingolipids and glycerolipids, between SZ and BD patients. The results obtained in this study may serve as a basis for differential diagnosis, which is crucial for effective treatment and improving the quality of life of patients with psychotic disorders.
Collapse
Affiliation(s)
- Alana C Costa
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo 05403903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Sao Paulo 05403903, Brazil
| | - Larissa B Riça
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083970, Brazil
| | - Martinus van de Bilt
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo 05403903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Sao Paulo 05403903, Brazil
| | - Flávia S Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083970, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo 05403903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Sao Paulo 05403903, Brazil
| | - Leda L Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo 05403903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Sao Paulo 05403903, Brazil
| | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083970, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083970, Brazil
| |
Collapse
|