1
|
Özkan H, Yazlık MO, Keçeli HH, Vural SA, Müştak İB, Kaya U, Altınbaş YF, Vural MR. Expression patterns of inflammatory and oxidative stress-related genes in the uterine and ovarian tissues of dogs diagnosed with pyometra based on cervical patency status. Theriogenology 2024; 228:1-8. [PMID: 39068700 DOI: 10.1016/j.theriogenology.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to investigate the expression patterns of genes associated with inflammation and oxidative stress in ovarian and uterine tissues of dogs with pyometra, categorized by cervical status (open cervix or closed cervix), which influences disease severity. The control group comprised healthy animals undergoing elective ovariohysterectomy. Tissue inflammatory gene expression and Malondialdehyde (MDA) levels were determined while microbial and histopathological examinations were conducted, along with immunohistochemical evaluations. In the closed-cervix group, uterine TNF and IL6 were upregulated approximately 10-fold while IL10 was upregulated nearly 5-fold. TNF expression differed remarkably between the pyometra groups. In the closed-cervix group, PTGS2 and HMOX1 were upregulated approximately 5-fold whereas NFE2L2 expression was downregulated. The closed-cervix group also had the highest uterine MDA levels. Regarding ovarian tissue, MDA levels were higher in the closed-cervix group than in the open-cervix group while IL10 expression was lower in the closed-cervix group than the open-cervix group. In the closed-cervix group, NFE2L2 was downregulated whereas HMOX1 was upregulated. Uterine TNF levels were positively correlated with IL6, IL10, PTGS2, and HMOX1, but negatively correlated with NFE2L2. IL6 was positively correlated with IL10, PTGS2, and HMOX1. NFE2L2 was negatively correlated with IL6 and HMOX1. IL10 was positively correlated with PTGS2 and HMOX1. MDA was positively correlated with TNF, IL6, IL10, PTGS2, NFE2L2, and HMOX1. TNF levels were positively correlated with ovarian PTGS2, and with IL6 and NFE2L2. MDA was positively correlated with PTGS2 and HMOX1. MDA could be an important biomarker for understanding the severity of pyometra. Moreover, TNF expression and its relationships with various studied parameters such as IL10 may contribute to treatment and prognostic biomarker studies in closed-cervix pyometra pathology.
Collapse
Affiliation(s)
- Hüseyin Özkan
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, 31060, Hatay, Turkey.
| | - Murat Onur Yazlık
- Ankara University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 06070 Ankara, Turkey.
| | - Hasan Hüseyin Keçeli
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, 31060 Hatay, Turkey.
| | - Sevil Atalay Vural
- Ankara University, Faculty of Veterinary Medicine, Department of Pathology, 06070 Ankara, Turkey.
| | - İnci Başak Müştak
- Ankara University Faculty of Veterinary Medicine Department of Microbiology, 06070, Ankara, Turkey.
| | - Ufuk Kaya
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Biostatistics, 31060, Hatay, Turkey.
| | - Yunus Furkan Altınbaş
- Ankara University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 06070 Ankara, Turkey; Ankara University Graduate School of Health Sciences, 06110, Ankara, Turkey
| | - Mehmet Rıfat Vural
- Ankara University, Faculty of Veterinary Medicine, Department of Obstetrics and Gynecology, 06070 Ankara, Turkey
| |
Collapse
|
2
|
Chen L, Li S, Li W, Yu Y, Sun Q, Chen W, Zhou H, Wang C, Li L, Xu M, Khan MZ, Li Y, Wang T. Rutin prevents EqHV-8 induced infection and oxidative stress via Nrf2/HO-1 signaling pathway. Front Cell Infect Microbiol 2024; 14:1386462. [PMID: 38725448 PMCID: PMC11079272 DOI: 10.3389/fcimb.2024.1386462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yubao Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
4
|
Sun Q, Li L, Jin F, Liu Y, Yang B, Meng W, Zhang Z, Qi F. SARS-CoV-2 Spike Protein S1 Exposure Increases Susceptibility to Angiotensin II-Induced Hypertension in Rats by Promoting Central Neuroinflammation and Oxidative Stress. Neurochem Res 2023; 48:3016-3026. [PMID: 37269471 PMCID: PMC10239221 DOI: 10.1007/s11064-023-03949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/05/2023]
Abstract
The SARS-CoV-2 spike S1 subunit (S1) can cross the blood-brain barrier and elicit neuroinflammatory response independent of viral infection. Here we examined whether S1 influences blood pressure (BP) and sensitizes the hypertensive response to angiotensin (ANG) II by enhancing neuroinflammation and oxidative stress in hypothalamic paraventricular nucleus (PVN), a key brain cardiovascular regulatory center. Rats received central S1 or vehicle (VEH) injection for 5 days. One week after injection, ANG II or saline (control) was subcutaneously delivered for 2 weeks. S1 injection induced greater increases in BP, PVN neuronal excitation and sympathetic drive in ANG II rats but had no effects in control rats. One week after S1 injection, mRNA for proinflammatory cytokines and oxidative stress marker were higher but mRNA of Nrf2, the master regulator of inducible antioxidant and anti-inflammatory responses, was lower in the PVN in S1-injected rats than in VEH-injected rats. Three weeks after S1 injection, mRNA for proinflammatory cytokines and oxidative stress marker, microglia activation and reactive oxygen species in the PVN were comparable between S1 and VEH treated control rats but were elevated in two groups of ANG II rats. Notably, ANG II-induced elevations in these parameters were exaggerated by S1. Interestingly, ANG II increased PVN Nrf2 mRNA in VEH-treated rats but not in S1-treated rats. These data suggest that S1 exposure has no effect on BP, but post-S1 exposure increases susceptibility to ANG II-induced hypertension by downregulating PVN Nrf2 to promote neuroinflammation and oxidative stress and augment sympathetic excitation.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Feihong Jin
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Yu Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Bo Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Wanping Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Zibin Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
5
|
Loinjak D, Mihić D, Smolić R, Maričić L, Šahinović I, Smolić M, Sikora R, Loinjak S, Dinjar K, Včev A. The Correlation of Serum Calpain 1 Activity and Concentrations of Interleukin 33 in COVID-19 Acute Respiratory Distress Syndrome. Biomedicines 2023; 11:1847. [PMID: 37509486 PMCID: PMC10376760 DOI: 10.3390/biomedicines11071847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most severe complications of the COVID-19 disease. The role of IL-33 and calpain 1 was previously described in lung infections and lung tissue damage. Our study examined the association between serum calpain 1 activity and IL-33 concentration in patients with COVID-19 ARDS. In the research, we included 80 subjects who had COVID-19 pneumonia and divided them into 2 groups: 40 subjects with ARDS and 40 subjects without ARDS. The basis of the research was the collection of subjects' data and the sampling of peripheral venous blood. The concentration of IL-33 was determined by the ELISA method and the activity of calpain 1 by the fluorometry method. Our research showed elevated calpain 1 activity and IL-33 concentration in the serum of COVID-19 patients who developed ARDS compared to those who did not develop ARDS and a positive correlation between them was established. Further, a positive correlation was established between the examined parameters and the severity of the disease, proinflammatory markers, and the use of mechanical ventilation. These results indicate a possible association and role of calpain 1 and IL-33 with the development of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Domagoj Loinjak
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Damir Mihić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Pulmology and Intensive Care Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Robert Smolić
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Lana Maričić
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Heart and Vascular Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Ines Šahinović
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Martina Smolić
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Renata Sikora
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| | - Sanja Loinjak
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Maxillofacial and Oral Surgery, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Kristijan Dinjar
- Faculty of Medicine, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
- Department of Maxillofacial and Oral Surgery, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health Osijek, University J. J. Strossmayer in Osijek, 31000 Osijek, Croatia
| |
Collapse
|