1
|
Kadkhodayan KS, Irani S. Clinical applications of device-assisted enteroscopy: a comprehensive review. Gastrointest Endosc 2025; 101:950-964. [PMID: 39870245 DOI: 10.1016/j.gie.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Affiliation(s)
- Kambiz S Kadkhodayan
- Division is Gastroenterology, Center for Interventional Endoscopy, AdventHealth, Orlando, Florida, USA.
| | - Shayan Irani
- Division is Gastroenterology, Virginia Mason Hospital & Seattle Medical Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Sidhu R, Shiha MG, Carretero C, Koulaouzidis A, Dray X, Mussetto A, Keuchel M, Spada C, Despott EJ, Chetcuti Zammit S, McNamara D, Rondonotti E, Sabino J, Ferlitsch M. Performance measures for small-bowel endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative - Update 2025. Endoscopy 2025; 57:366-389. [PMID: 39909070 DOI: 10.1055/a-2522-1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Quality markers and patient experience are being implemented to ensure standardization of practice across gastrointestinal (GI) endoscopy procedures. The set benchmarks ensure high quality procedures are delivered and linked to measurable outcomes.There has been an increase in the demand for small-bowel endoscopy. In 2019, the European Society of Gastrointestinal Endoscopy (ESGE) embarked on setting performance measures for small-bowel endoscopy. This included major (key) and minor performance indicators for both small-bowel capsule endoscopy (SBCE) and device-assisted enteroscopy (DAE). These suggested quality indicators cover all procedure domains, from patient selection and preparation, to intraprocedural aspects such as pathology identification, appropriate management, the patient experience, and post-procedure complications. Since 2019, there has been an increase in published studies looking at different aspects of small-bowel endoscopy, including real-world data. This paper provides an update on the 2019 performance measures, considering the latest literature.
Collapse
Affiliation(s)
- Reena Sidhu
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Mohamed G Shiha
- Academic Unit of Gastroenterology, Sheffield Teaching Hospitals, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Cristina Carretero
- Department of Gastroenterology, University of Navarra Clinic, Healthcare Research Institute of Navarra, Pamplona, Spain
| | - Anastasios Koulaouzidis
- Surgical Research Unit, Odense University Hospital (OUH) and Svendborg Sygehus, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Social Medicine and Public Health, Pomeranian Medical University, Szczecin, Poland
| | - Xavier Dray
- Sorbonne University, Center for Digestive Endoscopy, Sainte-Antoine Hospital, AP-HP, Paris, France
| | | | - Martin Keuchel
- Clinic for Internal Medicine, Agaplesion Bethesda Krankenhaus Bergedorf, Hamburg, Germany
| | - Cristiano Spada
- Digestive Endoscopy Unit and Gastroenterology, Fondazione Poliambulanza, Brescia, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Edward J Despott
- Royal Free Unit for Endoscopy, The Royal Free Hospital and UCL Institute for Liver and Digestive Health, London, UK
| | | | - Deirdre McNamara
- TAGG Research Centre, Department of Clinical Medicine, Trinity Centre, Tallaght Hospital, Dublin, Ireland
| | | | - João Sabino
- Department of Gastroenterology, University of Leuven, Leuven, Belgium
| | - Monika Ferlitsch
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine with Gastroenterology and Geriatrics, Klinik Floridsdorf, Vienna, Austria
| |
Collapse
|
3
|
Pal P, Pooja K, Nabi Z, Gupta R, Tandan M, Rao GV, Reddy N. Artificial intelligence in endoscopy related to inflammatory bowel disease: A systematic review. Indian J Gastroenterol 2024; 43:172-187. [PMID: 38418774 DOI: 10.1007/s12664-024-01531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND AND OBJECTIVES In spite of rapid growth of artificial intelligence (AI) in digestive endoscopy in lesion detection and characterization, the role of AI in inflammatory bowel disease (IBD) endoscopy is not clearly defined. We aimed at systematically reviewing the role of AI in IBD endoscopy and identifying future research areas. METHODS We searched the PubMed and Embase database using keywords ("artificial intelligence" OR "machine learning" OR "computer-aided" OR "convolutional neural network") AND ("inflammatory bowel disease" OR "ulcerative colitis" OR "Crohn's") AND ("endoscopy" or "colonoscopy" or "capsule endoscopy" or "device assisted enteroscopy") between 1975 and September 2023 and identified 62 original articles for detailed review. Review articles, consensus guidelines, case reports/series, editorials, letter to the editor, non-peer-reviewed pre-prints and conference abstracts were excluded. The quality of the included studies was assessed using the MI-CLAIM checklist. RESULTS The accuracy of AI models (25 studies) to assess ulcerative colitis (UC) endoscopic activity ranged between 86.54% and 94.5%. AI-assisted capsule endoscopy reading (12 studies) substantially reduced analyzable images and reading time with excellent accuracy (90.5% to 99.9%). AI-assisted analysis of colonoscopic images can help differentiate IBD from non-IBD, UC from non-UC and UC from Crohn's disease (CD) (three studies) with 72.1%, 98.3% and > 90% accuracy, respectively. AI models based on non-invasive clinical and radiologic parameters could predict endoscopic activity (three studies). AI-assisted virtual chromoendoscopy (four studies) could predict histologic remission and long-term outcomes. Computer-assisted detection (CADe) of dysplasia (two studies) is feasible along with AI-based differentiation of high from low-grade IBD neoplasia (79% accuracy). AI is effective in linking electronic medical record data (two studies) with colonoscopic videos to facilitate widespread machine learning. CONCLUSION AI-assisted IBD endoscopy has the potential to impact clinical management by automated detection and characterization of endoscopic lesions. Large, multi-center, prospective studies and commercially available IBD-specific endoscopic AI algorithms are warranted.
Collapse
Affiliation(s)
- Partha Pal
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India.
| | - Kanapuram Pooja
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Zaheer Nabi
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Rajesh Gupta
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Manu Tandan
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| | - Guduru Venkat Rao
- Surgical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad 500 082, India
| | - Nageshwar Reddy
- Medical Gastroenterology, Asian Institute of Gastroenterology, Somajiguda, Hyderabad, 500 082, India
| |
Collapse
|
4
|
Mota J, Almeida MJ, Mendes F, Martins M, Ribeiro T, Afonso J, Cardoso P, Cardoso H, Andrade P, Ferreira J, Mascarenhas M, Macedo G. From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy? Diagnostics (Basel) 2024; 14:291. [PMID: 38337807 PMCID: PMC10855436 DOI: 10.3390/diagnostics14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The role of capsule endoscopy and enteroscopy in managing various small-bowel pathologies is well-established. However, their broader application has been hampered mainly by their lengthy reading times. As a result, there is a growing interest in employing artificial intelligence (AI) in these diagnostic and therapeutic procedures, driven by the prospect of overcoming some major limitations and enhancing healthcare efficiency, while maintaining high accuracy levels. In the past two decades, the applicability of AI to gastroenterology has been increasing, mainly because of the strong imaging component. Nowadays, there are a multitude of studies using AI, specifically using convolutional neural networks, that prove the potential applications of AI to these endoscopic techniques, achieving remarkable results. These findings suggest that there is ample opportunity for AI to expand its presence in the management of gastroenterology diseases and, in the future, catalyze a game-changing transformation in clinical activities. This review provides an overview of the current state-of-the-art of AI in the scope of small-bowel study, with a particular focus on capsule endoscopy and enteroscopy.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Helder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Patrícia Andrade
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Digestive Artificial Intelligence Development, R. Alfredo Allen 455-461, 4200-135 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- ManopH Gastroenterology Clinic, R. de Sá da Bandeira 752, 4000-432 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
5
|
Zhu Y, Lyu X, Tao X, Wu L, Yin A, Liao F, Hu S, Wang Y, Zhang M, Huang L, Wang J, Zhang C, Gong D, Jiang X, Zhao L, Yu H. A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination. BMC Gastroenterol 2024; 24:10. [PMID: 38166722 PMCID: PMC10759410 DOI: 10.1186/s12876-023-03067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Double-balloon enteroscopy (DBE) is a standard method for diagnosing and treating small bowel disease. However, DBE may yield false-negative results due to oversight or inexperience. We aim to develop a computer-aided diagnostic (CAD) system for the automatic detection and classification of small bowel abnormalities in DBE. DESIGN AND METHODS A total of 5201 images were collected from Renmin Hospital of Wuhan University to construct a detection model for localizing lesions during DBE, and 3021 images were collected to construct a classification model for classifying lesions into four classes, protruding lesion, diverticulum, erosion & ulcer and angioectasia. The performance of the two models was evaluated using 1318 normal images and 915 abnormal images and 65 videos from independent patients and then compared with that of 8 endoscopists. The standard answer was the expert consensus. RESULTS For the image test set, the detection model achieved a sensitivity of 92% (843/915) and an area under the curve (AUC) of 0.947, and the classification model achieved an accuracy of 86%. For the video test set, the accuracy of the system was significantly better than that of the endoscopists (85% vs. 77 ± 6%, p < 0.01). For the video test set, the proposed system was superior to novices and comparable to experts. CONCLUSIONS We established a real-time CAD system for detecting and classifying small bowel lesions in DBE with favourable performance. ENDOANGEL-DBE has the potential to help endoscopists, especially novices, in clinical practice and may reduce the miss rate of small bowel lesions.
Collapse
Affiliation(s)
- Yijie Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoguang Lyu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao Tao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anning Yin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Hu
- School of Computer Science, Wuhan University, Wuhan, China
| | - Yang Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengjiao Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junxiao Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chenxia Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dexin Gong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoda Jiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Mendes F, Mascarenhas M, Ribeiro T, Afonso J, Cardoso P, Martins M, Cardoso H, Andrade P, Ferreira JPS, Mascarenhas Saraiva M, Macedo G. Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy. Cancers (Basel) 2024; 16:208. [PMID: 38201634 PMCID: PMC10778030 DOI: 10.3390/cancers16010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Device-assisted enteroscopy (DAE) is capable of evaluating the entire gastrointestinal tract, identifying multiple lesions. Nevertheless, DAE's diagnostic yield is suboptimal. Convolutional neural networks (CNN) are multi-layer architecture artificial intelligence models suitable for image analysis, but there is a lack of studies about their application in DAE. Our group aimed to develop a multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. In total, 338 exams performed in two specialized centers were retrospectively evaluated, with 152 single-balloon enteroscopies (Fujifilm®, Porto, Portugal), 172 double-balloon enteroscopies (Olympus®, Porto, Portugal) and 14 motorized spiral enteroscopies (Olympus®, Porto, Portugal); then, 40,655 images were divided in a training dataset (90% of the images, n = 36,599) and testing dataset (10% of the images, n = 4066) used to evaluate the model. The CNN's output was compared to an expert consensus classification. The model was evaluated by its sensitivity, specificity, positive (PPV) and negative predictive values (NPV), accuracy and area under the precision recall curve (AUC-PR). The CNN had an 88.9% sensitivity, 98.9% specificity, 95.8% PPV, 97.1% NPV, 96.8% accuracy and an AUC-PR of 0.97. Our group developed the first multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. The development of accurate deep learning models is of utmost importance for increasing the diagnostic yield of DAE-based panendoscopy.
Collapse
Affiliation(s)
- Francisco Mendes
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
| | - Miguel Mascarenhas
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Afonso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
| | - Hélder Cardoso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Patrícia Andrade
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João P. S. Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, R. Alfredo Allen n°. 455/461, 4200-135 Porto, Portugal
| | | | - Guilherme Macedo
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
7
|
Popa SL, Stancu B, Ismaiel A, Turtoi DC, Brata VD, Duse TA, Bolchis R, Padureanu AM, Dita MO, Bashimov A, Incze V, Pinna E, Grad S, Pop AV, Dumitrascu DI, Munteanu MA, Surdea-Blaga T, Mihaileanu FV. Enteroscopy versus Video Capsule Endoscopy for Automatic Diagnosis of Small Bowel Disorders-A Comparative Analysis of Artificial Intelligence Applications. Biomedicines 2023; 11:2991. [PMID: 38001991 PMCID: PMC10669430 DOI: 10.3390/biomedicines11112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Small bowel disorders present a diagnostic challenge due to the limited accessibility of the small intestine. Accurate diagnosis is made with the aid of specific procedures, like capsule endoscopy or double-ballon enteroscopy, but they are not usually solicited and not widely accessible. This study aims to assess and compare the diagnostic effectiveness of enteroscopy and video capsule endoscopy (VCE) when combined with artificial intelligence (AI) algorithms for the automatic detection of small bowel diseases. MATERIALS AND METHODS We performed an extensive literature search for relevant studies about AI applications capable of identifying small bowel disorders using enteroscopy and VCE, published between 2012 and 2023, employing PubMed, Cochrane Library, Google Scholar, Embase, Scopus, and ClinicalTrials.gov databases. RESULTS Our investigation discovered a total of 27 publications, out of which 21 studies assessed the application of VCE, while the remaining 6 articles analyzed the enteroscopy procedure. The included studies portrayed that both investigations, enhanced by AI, exhibited a high level of diagnostic accuracy. Enteroscopy demonstrated superior diagnostic capability, providing precise identification of small bowel pathologies with the added advantage of enabling immediate therapeutic intervention. The choice between these modalities should be guided by clinical context, patient preference, and resource availability. Studies with larger sample sizes and prospective designs are warranted to validate these results and optimize the integration of AI in small bowel diagnostics. CONCLUSIONS The current analysis demonstrates that both enteroscopy and VCE with AI augmentation exhibit comparable diagnostic performance for the automatic detection of small bowel disorders.
Collapse
Affiliation(s)
- Stefan Lucian Popa
- 2nd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (S.L.P.); (A.I.); (S.G.); (A.-V.P.); (T.S.-B.)
| | - Bogdan Stancu
- 2nd Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Abdulrahman Ismaiel
- 2nd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (S.L.P.); (A.I.); (S.G.); (A.-V.P.); (T.S.-B.)
| | - Daria Claudia Turtoi
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Vlad Dumitru Brata
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Traian Adrian Duse
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Roxana Bolchis
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Alexandru Marius Padureanu
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Miruna Oana Dita
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Atamyrat Bashimov
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Victor Incze
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Edoardo Pinna
- Faculty of Medicine, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (D.C.T.); (V.D.B.); (T.A.D.); (R.B.); (A.M.P.); (M.O.D.); (A.B.); (V.I.); (E.P.)
| | - Simona Grad
- 2nd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (S.L.P.); (A.I.); (S.G.); (A.-V.P.); (T.S.-B.)
| | - Andrei-Vasile Pop
- 2nd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (S.L.P.); (A.I.); (S.G.); (A.-V.P.); (T.S.-B.)
| | - Dinu Iuliu Dumitrascu
- Department of Anatomy, “Iuliu Hatieganu“ University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Teodora Surdea-Blaga
- 2nd Medical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (S.L.P.); (A.I.); (S.G.); (A.-V.P.); (T.S.-B.)
| | - Florin Vasile Mihaileanu
- 2nd Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| |
Collapse
|