1
|
Meroni M, Longo M, Paolini E, Dongiovanni P. A narrative review about cognitive impairment in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Another matter to face through a holistic approach. J Adv Res 2025; 68:231-240. [PMID: 38369241 PMCID: PMC11785580 DOI: 10.1016/j.jare.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic hepatic disorder worldwide in both adults and children. It is well established that MASLD represents the hepatic manifestation of the metabolic syndrome whose definition includes the presence of obesity, type 2 diabetes (T2D), dyslipidemia, hypertension and hypercoagulability. All these conditions contribute to a chronic inflammatory status which may impact on blood brain barrier (BBB) integrity leading to an impaired function of central nervous system (CNS). AIM OF REVIEW Since the mechanisms underlying the brain-liver-gut axis derangement are still inconclusive, the present narrative review aims to make a roundup of the most recent studies regarding the cognitive decline in MASLD also highlighting possible therapeutic strategies to reach a holistic advantage for the patients. KEY SCIENTIFIC CONCEPTS OF REVIEW Due to its ever-growing prevalence, the MASLD-related mental dysfunction represents an enormous socio-economic burden since it largely impacts on the quality of life of patients as well as on their working productivity. Indeed, cognitive decline in MASLD translates in low concentration and processing speed, reduced memory, sleepiness but also anxiety and depression. Chronic systemic inflammation, hyperammonemia, genetic background and intestinal dysbiosis possibly contribute to the cognitive decline in MASLD patients. However, its diagnosis is still underestimated since the leading mechanisms are multi-faceted and unexplained and do not exist standardized diagnostic tools or cognitive test strategies. In this scenario, nutritional and lifestyle interventions as well as intestinal microbiota manipulation (probiotics, fecal transplantation) may represent new approaches to counteract mental impairment in these subjects. In sum, to face the "mental aspect" of this multifactorial disease which is almost unexplored, cognitive tools should be introduced in the management of MASLD patients.
Collapse
Affiliation(s)
- Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Miriam Longo
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Paolini
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
2
|
Ranneh Y, Bedir AS, Abu-Elsaoud AM, Al Raish S. Polyphenol Intervention Ameliorates Non-Alcoholic Fatty Liver Disease: An Updated Comprehensive Systematic Review. Nutrients 2024; 16:4150. [PMID: 39683546 PMCID: PMC11644642 DOI: 10.3390/nu16234150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a challenging metabolic disorder with a strong emphasis on its prevention and management. Polyphenols, a group of naturally occurring plant compounds, have been associated with a decreased risk of various metabolic disorders related to NAFLD. The current systematic review aims to critically assess evidence about the ameliorative effect of polyphenol supplementation on NAFLD patients. A PRISMA systematic search appraisal was conducted in PubMed, Scopus, Web of Science Core Collection, and all relevant studies published prior to April 2024 and met the inclusion criteria were included. Twenty-nine randomized clinical trials (RCTs) comprised 1840 NAFLD patients. The studies primarily examined eleven phenolic compounds, including turmeric, curcumin, resveratrol, genistein, catechin, green tea extract, hesperidin, and silymarin. Turmeric and curcumin decreased liver enzymes, inflammatory cytokines, lipid profile, insulin resistance, and NAFLD score, while resveratrol did not present consistent results across all the studies. Most studies on silymarin showed a reduction in liver enzymes and lipid profile; however, no changes were observed in inflammatory cytokine levels. The dietary supplementation of hesperidin and naringenin or green tea extract caused improvements in liver enzyme, lipid profile, and inflammatory cytokine, while genistein supplementation did not modulate blood lipid profile. In conclusion, dietary supplementation of polyphenols could potentially prevent and ameliorate NAFLD. Still, the inconsistent results across the included RCTs require further clinical research to establish optimal dosage and duration.
Collapse
Affiliation(s)
- Yazan Ranneh
- Department of Nutrition and Dietetics, College of Pharmacy, Al-Ain University, Al-Ain P.O. Box 64141, United Arab Emirates;
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Abdelghafar M. Abu-Elsaoud
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Seham Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Tobaruela-Resola AL, Riezu-Boj JI, Milagro FI, Mogna-Pelaez P, Herrero JI, Elorz M, Benito-Boillos A, Tur JA, Martínez JA, Abete I, Zulet MA. Multipanel Approach including miRNAs, Inflammatory Markers, and Depressive Symptoms for Metabolic Dysfunction-Associated Steatotic Liver Disease Diagnosis during 2-Year Nutritional Intervention. Nutrients 2024; 16:1547. [PMID: 38892481 PMCID: PMC11174705 DOI: 10.3390/nu16111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), with a prevalence of 30% of adults globally, is considered a multifactorial disease. There is a lack of effective non-invasive methods for accurate diagnosis and monitoring. Therefore, this study aimed to explore associations between changes in circulating miRNA levels, inflammatory markers, and depressive symptoms with hepatic variables in MASLD subjects and their combined potential to predict the disease after following a dietary intervention. Biochemical markers, body composition, circulating miRNAs and hepatic and psychological status of 55 subjects with MASLD with obesity and overweight from the FLiO study were evaluated by undergoing a 6-, 12- and 24-month nutritional intervention. The highest accuracy values of combined panels to predict the disease were identified after 24 months. A combination panel that included changes in liver stiffness, high-density lipoprotein cholesterol (HDL-c), body mass index (BMI), depressive symptoms, and triglycerides (TG) yielded an AUC of 0.90. Another panel that included changes in hepatic fat content, total cholesterol (TC), miR15b-3p, TG, and depressive symptoms revealed an AUC of 0.89. These findings identify non-invasive biomarker panels including circulating miRNAs, inflammatory markers, depressive symptoms and other metabolic variables for predicting MASLD presence and emphasize the importance of precision nutrition in MASLD management and the sustained adherence to healthy lifestyle patterns.
Collapse
Affiliation(s)
- Ana Luz Tobaruela-Resola
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
| | - José I. Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
| | - Fermin I. Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| | - Paola Mogna-Pelaez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
| | - José I. Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Liver Unit, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Josep A. Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS & IDISBA, 07122 Palma, Spain
| | - J. Alfredo Martínez
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
- Precision Nutrition and Cardiovascular Health Program, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| | - M. Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.L.T.-R.); (J.I.R.-B.); (F.I.M.); (P.M.-P.); (I.A.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.H.); (M.E.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.A.T.); (J.A.M.)
| |
Collapse
|