1
|
Araújo CC, Frias J, Mendes F, Martins M, Mota J, Almeida MJ, Ribeiro T, Macedo G, Mascarenhas M. Unlocking the Potential of AI in EUS and ERCP: A Narrative Review for Pancreaticobiliary Disease. Cancers (Basel) 2025; 17:1132. [PMID: 40227709 PMCID: PMC11988021 DOI: 10.3390/cancers17071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
Artificial Intelligence (AI) is transforming pancreaticobiliary endoscopy by enhancing diagnostic accuracy, procedural efficiency, and clinical outcomes. This narrative review explores AI's applications in endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP), emphasizing its potential to address diagnostic and therapeutic challenges in pancreaticobiliary diseases. In EUS, AI improves pancreatic mass differentiation, malignancy prediction, and landmark recognition, demonstrating high diagnostic accuracy and outperforming traditional guidelines. In ERCP, AI facilitates precise biliary stricture identification, optimizes procedural techniques, and supports decision-making through real-time data integration, improving ampulla recognition and predicting cannulation difficulty. Additionally, predictive analytics help mitigate complications like post-ERCP pancreatitis. The future of AI in pancreaticobiliary endoscopy lies in multimodal data fusion, integrating imaging, genomic, and molecular data to enable personalized medicine. However, challenges such as data quality, external validation, clinician training, and ethical concerns-like data privacy and algorithmic bias-must be addressed to ensure safe implementation. By overcoming these challenges, AI has the potential to redefine pancreaticobiliary healthcare, improving diagnostic accuracy, therapeutic outcomes, and personalized care.
Collapse
Affiliation(s)
- Catarina Cardoso Araújo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Frias
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (C.C.A.); (J.F.); (F.M.); (M.M.); (J.M.); (M.J.A.); (T.R.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
2
|
de Oliveira MBM, Mendes F, Martins M, Cardoso P, Fonseca J, Mascarenhas T, Saraiva MM. The Role of Artificial Intelligence in Urogynecology: Current Applications and Future Prospects. Diagnostics (Basel) 2025; 15:274. [PMID: 39941204 PMCID: PMC11816405 DOI: 10.3390/diagnostics15030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Artificial intelligence (AI) is the new medical hot topic, being applied mainly in specialties with a strong imaging component. In the domain of gynecology, AI has been tested and shown vast potential in several areas with promising results, with an emphasis on oncology. However, fewer studies have been made focusing on urogynecology, a branch of gynecology known for using multiple imaging exams (IEs) and tests in the management of women's pelvic floor health. This review aims to illustrate the current state of AI in urogynecology, namely with the use of machine learning (ML) and deep learning (DL) in diagnostics and as imaging tools, discuss possible future prospects for AI in this field, and go over its limitations that challenge its safe implementation.
Collapse
Affiliation(s)
- Maria Beatriz Macedo de Oliveira
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.M.d.O.); (P.C.); (T.M.)
| | - Francisco Mendes
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Miguel Martins
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.M.d.O.); (P.C.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - João Fonseca
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
| | - Teresa Mascarenhas
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.M.d.O.); (P.C.); (T.M.)
- Department of Obstetrics and Gynecology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas Saraiva
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.M.d.O.); (P.C.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| |
Collapse
|
3
|
Mascarenhas M, Mendes F, Martins M, Ribeiro T, Afonso J, Cardoso P, Ferreira J, Fonseca J, Macedo G. Explainable AI in Digestive Healthcare and Gastrointestinal Endoscopy. J Clin Med 2025; 14:549. [PMID: 39860554 PMCID: PMC11765989 DOI: 10.3390/jcm14020549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
An important impediment to the incorporation of artificial intelligence-based tools into healthcare is their association with so-called black box medicine, a concept arising due to their complexity and the difficulties in understanding how they reach a decision. This situation may compromise the clinician's trust in these tools, should any errors occur, and the inability to explain how decisions are reached may affect their relationship with patients. Explainable AI (XAI) aims to overcome this limitation by facilitating a better understanding of how AI models reach their conclusions for users, thereby enhancing trust in the decisions reached. This review first defined the concepts underlying XAI, establishing the tools available and how they can benefit digestive healthcare. Examples of the application of XAI in digestive healthcare were provided, and potential future uses were proposed. In addition, aspects of the regulatory frameworks that must be established and the ethical concerns that must be borne in mind during the development of these tools were discussed. Finally, we considered the challenges that this technology faces to ensure that optimal benefits are reaped, highlighting the need for more research into the use of XAI in this field.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (M.M.); (T.R.); (J.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (M.M.); (T.R.); (J.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (M.M.); (T.R.); (J.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (M.M.); (T.R.); (J.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (M.M.); (T.R.); (J.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (M.M.); (T.R.); (J.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4099-002 Porto, Portugal
- Digestive Artificial Intelligence Development, 4200-135 Porto, Portugal
| | - João Fonseca
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (M.M.); (T.R.); (J.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal;
| |
Collapse
|
4
|
Agudo Castillo B, Mascarenhas M, Martins M, Mendes F, de la Iglesia D, Costa AMMPD, Esteban Fernández-Zarza C, González-Haba Ruiz M. Advancements in biliopancreatic endoscopy - A comprehensive review of artificial intelligence in EUS and ERCP. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:613-622. [PMID: 38832589 DOI: 10.17235/reed.2024.10456/2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The development and implementation of artificial intelligence (AI), particularly deep learning (DL) models, has generated significant interest across various fields of gastroenterology. While research in luminal endoscopy has seen rapid translation to clinical practice with approved AI devices, its potential extends far beyond, offering promising benefits for biliopancreatic endoscopy like optical characterization of strictures during cholangioscopy or detection and classification of pancreatic lesions during diagnostic endoscopic ultrasound (EUS). This narrative review provides an up-to-date of the latest literature and available studies in this field. Serving as a comprehensive guide to the current landscape of AI in biliopancreatic endoscopy, emphasizing technological advancements, main applications, ethical considerations, and future directions for research and clinical implementation.
Collapse
Affiliation(s)
| | | | - Miguel Martins
- Gastroenterology, Centro Hospitalar Universitário de São João
| | - Francisco Mendes
- Gastroenterology, Centro Hospitalar Universitário de São João, Portugal
| | | | | | | | | |
Collapse
|
5
|
Lin YH, Liang CC, Chou YL, Lin CS, Chen KL, Pan LK, Cheng KY, Ke CH. Best-Corrected Visual Acuity Quantitative Prediction for Cataract Patients: AI-Assisted Clinical Diagnostics Facilitation via the Inverse Problem Algorithm. Diagnostics (Basel) 2024; 14:2126. [PMID: 39410529 PMCID: PMC11475792 DOI: 10.3390/diagnostics14192126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Objective: This study provided a quantitative prediction of best-corrected visual acuity (BCVA) for cataract patients using the inverse problem algorithm (IPA) technique earlier proposed by the authors. Methods: To this end, seven risk factors (age, BMI, MAP, IOP, HbA1c, LDL-C, and gender) were linked by a semi-empirical formula by normalizing each factor into a dimensionless range of -1.0 to +1.0. The adopted inverse problem algorithm (IPA) technique was run via a self-developed program in STATISTICA 7.0, featuring a 29-term nonlinear equation considering seven risk factors, cross-interaction between various pairs of factors, and one constant term [7 + (7 × 6)/2 + 1 = 29]. The IPA neglected quadratic, triple, or quadruple factors' cross-interactions. This study used a dataset of 632 cataract patients to attain a reliable BCVA prediction with a variance of 0.929. A verification dataset of 160 patients with similar symptoms was used to verify this approach's feasibility, reaching a good correlation with R2 = 0.909. Results: The verification group's derived average AT (agreement) (9.12 ± 27.00%) indicated a slight deviation between the theoretical prediction and practical BCVA. The significant factors were age, body mass index (BMI), and intraocular pressure (IOP), whereas mean arterial pressure (MAP), hemoglobin A1c (HbA1c), low-density-lipoprotein cholesterol (LDL-C), and gender insignificantly contributed to BCVA. Conclusions: The proposed approach is instrumental in AI-assisted clinical diagnosis, yielding robust BCVA predictions for individual cataract patients based on their biological indices before the ophthalmological examination procedure.
Collapse
Affiliation(s)
- Ya-Hui Lin
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Takun, Taichung 406, Taiwan; (Y.-H.L.); (Y.-L.C.); (L.-K.P.)
- Department of Clinical Pharmacy, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Chun-Chieh Liang
- Division of Neurosurgery, Department of Surgery, Taichung Armed-Forces General Hospital, Taichung 411, Taiwan;
- Division of Neurosurgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ying-Liang Chou
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Takun, Taichung 406, Taiwan; (Y.-H.L.); (Y.-L.C.); (L.-K.P.)
- Department of Otolaryngology-Head and Neck Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Sheng Lin
- Department of Radiology, BenQ Medical Center, Affiliated BenQ Hospital of the Nanjing Medical University, Nanjing 211166, China;
| | - Ke-Lin Chen
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315012, China;
| | - Lung-Kwang Pan
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Takun, Taichung 406, Taiwan; (Y.-H.L.); (Y.-L.C.); (L.-K.P.)
| | - Kai-Yuan Cheng
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Takun, Taichung 406, Taiwan; (Y.-H.L.); (Y.-L.C.); (L.-K.P.)
| | - Ching-Hsiu Ke
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Takun, Taichung 406, Taiwan; (Y.-H.L.); (Y.-L.C.); (L.-K.P.)
- Department of Optometry, Central Taiwan University of Science and Technology, Takun, Taichung 406, Taiwan
| |
Collapse
|
6
|
Mascarenhas M, Martins M, Ribeiro T, Afonso J, Cardoso P, Mendes F, Cardoso H, Almeida R, Ferreira J, Fonseca J, Macedo G. Software as a Medical Device (SaMD) in Digestive Healthcare: Regulatory Challenges and Ethical Implications. Diagnostics (Basel) 2024; 14:2100. [PMID: 39335779 PMCID: PMC11431531 DOI: 10.3390/diagnostics14182100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The growing integration of software in healthcare, particularly the rise of standalone software as a medical device (SaMD), is transforming digestive medicine, a field heavily reliant on medical imaging for both diagnosis and therapeutic interventions. This narrative review aims to explore the impact of SaMD on digestive healthcare, focusing on the evolution of these tools and their regulatory and ethical challenges. Our analysis highlights the exponential growth of SaMD in digestive healthcare, driven by the need for precise diagnostic tools and personalized treatment strategies. This rapid advancement, however, necessitates the parallel development of a robust regulatory framework to ensure SaMDs are transparent and deliver universal clinical benefits without the introduction of bias or harm. In addition, the discussion highlights the importance of adherence to the FAIR principles for data management-findability, accessibility, interoperability, and reusability. However, enhanced accessibility and interoperability require rigorous protocols to ensure compliance with data protection guidelines and adequate data security, both of which are crucial for effective integration of SaMDs into clinical workflows. In conclusion, while SaMDs hold significant promise for improving patients' outcomes in digestive medicine, their successful integration into clinical workflow depends on rigorous data protection protocols and clinical validation. Future directions include the need for adequate clinical and real-world studies to demonstrate that these devices are safe and well-suited to healthcare settings.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of University of Porto, 4200 427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
| | - Hélder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - Rute Almeida
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of University of Porto, 4200 427 Porto, Portugal
| | - João Ferreira
- Department of Mechanic Engineering, Faculty of Engineering of University of Porto, 4200 427 Porto, Portugal
- DigestAID-Digestive Artificial Intelligence Development, 4200 427 Porto, Portugal
| | - João Fonseca
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of University of Porto, 4200 427 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| |
Collapse
|
7
|
Mota J, João Almeida M, Mendes F, Martins M, Ribeiro T, Afonso J, Cardoso P, Cardoso H, Andrade P, Ferreira J, Macedo G, Mascarenhas M. A Comprehensive Review of Artificial Intelligence and Colon Capsule Endoscopy: Opportunities and Challenges. Diagnostics (Basel) 2024; 14:2072. [PMID: 39335751 PMCID: PMC11431528 DOI: 10.3390/diagnostics14182072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Colon capsule endoscopy (CCE) enables a comprehensive, non-invasive, and painless evaluation of the colon, although it still has limited indications. The lengthy reading times hinder its wider implementation, a drawback that could potentially be overcome through the integration of artificial intelligence (AI) models. Studies employing AI, particularly convolutional neural networks (CNNs), demonstrate great promise in using CCE as a viable option for detecting certain diseases and alterations in the colon, compared to other methods like colonoscopy. Additionally, employing AI models in CCE could pave the way for a minimally invasive panenteric or even panendoscopic solution. This review aims to provide a comprehensive summary of the current state-of-the-art of AI in CCE while also addressing the challenges, both technical and ethical, associated with broadening indications for AI-powered CCE. Additionally, it also gives a brief reflection of the potential environmental advantages of using this method compared to alternative ones.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Helder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Patricia Andrade
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Digestive Artificial Intelligence Development, 4200-135 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
- ManopH Gastroenterology Clinic, 4000-432 Porto, Portugal
| |
Collapse
|
8
|
Brandão M, Mendes F, Martins M, Cardoso P, Macedo G, Mascarenhas T, Mascarenhas Saraiva M. Revolutionizing Women's Health: A Comprehensive Review of Artificial Intelligence Advancements in Gynecology. J Clin Med 2024; 13:1061. [PMID: 38398374 PMCID: PMC10889757 DOI: 10.3390/jcm13041061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Artificial intelligence has yielded remarkably promising results in several medical fields, namely those with a strong imaging component. Gynecology relies heavily on imaging since it offers useful visual data on the female reproductive system, leading to a deeper understanding of pathophysiological concepts. The applicability of artificial intelligence technologies has not been as noticeable in gynecologic imaging as in other medical fields so far. However, due to growing interest in this area, some studies have been performed with exciting results. From urogynecology to oncology, artificial intelligence algorithms, particularly machine learning and deep learning, have shown huge potential to revolutionize the overall healthcare experience for women's reproductive health. In this review, we aim to establish the current status of AI in gynecology, the upcoming developments in this area, and discuss the challenges facing its clinical implementation, namely the technological and ethical concerns for technology development, implementation, and accountability.
Collapse
Affiliation(s)
- Marta Brandão
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
| | - Francisco Mendes
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Miguel Martins
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Guilherme Macedo
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Teresa Mascarenhas
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
- Department of Obstetrics and Gynecology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas Saraiva
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (M.B.); (P.C.); (G.M.); (T.M.)
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal; (F.M.); (M.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| |
Collapse
|
9
|
Mota J, Almeida MJ, Mendes F, Martins M, Ribeiro T, Afonso J, Cardoso P, Cardoso H, Andrade P, Ferreira J, Mascarenhas M, Macedo G. From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy? Diagnostics (Basel) 2024; 14:291. [PMID: 38337807 PMCID: PMC10855436 DOI: 10.3390/diagnostics14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The role of capsule endoscopy and enteroscopy in managing various small-bowel pathologies is well-established. However, their broader application has been hampered mainly by their lengthy reading times. As a result, there is a growing interest in employing artificial intelligence (AI) in these diagnostic and therapeutic procedures, driven by the prospect of overcoming some major limitations and enhancing healthcare efficiency, while maintaining high accuracy levels. In the past two decades, the applicability of AI to gastroenterology has been increasing, mainly because of the strong imaging component. Nowadays, there are a multitude of studies using AI, specifically using convolutional neural networks, that prove the potential applications of AI to these endoscopic techniques, achieving remarkable results. These findings suggest that there is ample opportunity for AI to expand its presence in the management of gastroenterology diseases and, in the future, catalyze a game-changing transformation in clinical activities. This review provides an overview of the current state-of-the-art of AI in the scope of small-bowel study, with a particular focus on capsule endoscopy and enteroscopy.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Helder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Patrícia Andrade
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Digestive Artificial Intelligence Development, R. Alfredo Allen 455-461, 4200-135 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- ManopH Gastroenterology Clinic, R. de Sá da Bandeira 752, 4000-432 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
10
|
Mendes F, Mascarenhas M, Ribeiro T, Afonso J, Cardoso P, Martins M, Cardoso H, Andrade P, Ferreira JPS, Mascarenhas Saraiva M, Macedo G. Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy. Cancers (Basel) 2024; 16:208. [PMID: 38201634 PMCID: PMC10778030 DOI: 10.3390/cancers16010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Device-assisted enteroscopy (DAE) is capable of evaluating the entire gastrointestinal tract, identifying multiple lesions. Nevertheless, DAE's diagnostic yield is suboptimal. Convolutional neural networks (CNN) are multi-layer architecture artificial intelligence models suitable for image analysis, but there is a lack of studies about their application in DAE. Our group aimed to develop a multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. In total, 338 exams performed in two specialized centers were retrospectively evaluated, with 152 single-balloon enteroscopies (Fujifilm®, Porto, Portugal), 172 double-balloon enteroscopies (Olympus®, Porto, Portugal) and 14 motorized spiral enteroscopies (Olympus®, Porto, Portugal); then, 40,655 images were divided in a training dataset (90% of the images, n = 36,599) and testing dataset (10% of the images, n = 4066) used to evaluate the model. The CNN's output was compared to an expert consensus classification. The model was evaluated by its sensitivity, specificity, positive (PPV) and negative predictive values (NPV), accuracy and area under the precision recall curve (AUC-PR). The CNN had an 88.9% sensitivity, 98.9% specificity, 95.8% PPV, 97.1% NPV, 96.8% accuracy and an AUC-PR of 0.97. Our group developed the first multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. The development of accurate deep learning models is of utmost importance for increasing the diagnostic yield of DAE-based panendoscopy.
Collapse
Affiliation(s)
- Francisco Mendes
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
| | - Miguel Mascarenhas
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Afonso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
| | - Hélder Cardoso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Patrícia Andrade
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João P. S. Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, R. Alfredo Allen n°. 455/461, 4200-135 Porto, Portugal
| | | | - Guilherme Macedo
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
11
|
Mascarenhas M, Martins M, Afonso J, Ribeiro T, Cardoso P, Mendes F, Andrade P, Cardoso H, Ferreira J, Macedo G. The Future of Minimally Invasive Capsule Panendoscopy: Robotic Precision, Wireless Imaging and AI-Driven Insights. Cancers (Basel) 2023; 15:5861. [PMID: 38136403 PMCID: PMC10742312 DOI: 10.3390/cancers15245861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
In the early 2000s, the introduction of single-camera wireless capsule endoscopy (CE) redefined small bowel study. Progress continued with the development of double-camera devices, first for the colon and rectum, and then, for panenteric assessment. Advancements continued with magnetic capsule endoscopy (MCE), particularly when assisted by a robotic arm, designed to enhance gastric evaluation. Indeed, as CE provides full visualization of the entire gastrointestinal (GI) tract, a minimally invasive capsule panendoscopy (CPE) could be a feasible alternative, despite its time-consuming nature and learning curve, assuming appropriate bowel cleansing has been carried out. Recent progress in artificial intelligence (AI), particularly in the development of convolutional neural networks (CNN) for CE auxiliary reading (detecting and diagnosing), may provide the missing link in fulfilling the goal of establishing the use of panendoscopy, although prospective studies are still needed to validate these models in actual clinical scenarios. Recent CE advancements will be discussed, focusing on the current evidence on CNN developments, and their real-life implementation potential and associated ethical challenges.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Patrícia Andrade
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Helder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - João Ferreira
- Department of Mechanic Engineering, Faculty of Engineering, University of Porto, 4200-065 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, 455/461, 4200-135 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (M.M.); (J.A.); (T.R.); (P.C.); (F.M.); (P.A.); (H.C.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| |
Collapse
|
12
|
Mascarenhas M, Ribeiro T, Afonso J, Mendes F, Cardoso P, Martins M, Ferreira J, Macedo G. Smart Endoscopy Is Greener Endoscopy: Leveraging Artificial Intelligence and Blockchain Technologies to Drive Sustainability in Digestive Health Care. Diagnostics (Basel) 2023; 13:3625. [PMID: 38132209 PMCID: PMC10743290 DOI: 10.3390/diagnostics13243625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
The surge in the implementation of artificial intelligence (AI) in recent years has permeated many aspects of our life, and health care is no exception. Whereas this technology can offer clear benefits, some of the problems associated with its use have also been recognised and brought into question, for example, its environmental impact. In a similar fashion, health care also has a significant environmental impact, and it requires a considerable source of greenhouse gases. Whereas efforts are being made to reduce the footprint of AI tools, here, we were specifically interested in how employing AI tools in gastroenterology departments, and in particular in conjunction with capsule endoscopy, can reduce the carbon footprint associated with digestive health care while offering improvements, particularly in terms of diagnostic accuracy. We address the different ways that leveraging AI applications can reduce the carbon footprint associated with all types of capsule endoscopy examinations. Moreover, we contemplate how the incorporation of other technologies, such as blockchain technology, into digestive health care can help ensure the sustainability of this clinical speciality and by extension, health care in general.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - João Ferreira
- Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - Guilherme Macedo
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| |
Collapse
|