1
|
Schelde-Olesen B, Koulaouzidis A, Deding U, Toth E, Dabos KJ, Eliakim A, Carretero C, González-Suárez B, Dray X, de Lange T, Beaumont H, Rondonotti E, Kopylov U, Ellul P, Pérez-Cuadrado-Robles E, Robertson A, Stenfors I, Bojorquez A, Piccirelli S, Raabe GG, Margalit-Yehuda R, Barba I, Scardino G, Ouazana S, Bjørsum-Meyer T. Bowel cleansing quality evaluation in colon capsule endoscopy: what is the reference standard? Therap Adv Gastroenterol 2024; 17:17562848241290256. [PMID: 39449979 PMCID: PMC11500223 DOI: 10.1177/17562848241290256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The diagnostic accuracy of colon capsule endoscopy (CCE) depends on a well-cleansed bowel. Evaluating the cleansing quality can be difficult with a substantial interobserver variation. OBJECTIVES Our primary aim was to establish a standard of agreement for bowel cleansing in CCE based on evaluations by expert readers. Then, we aimed to investigate the interobserver agreement on bowel cleansing. DESIGN We conducted an interobserver agreement study on bowel cleansing quality. METHODS Readers with different experience levels in CCE and colonoscopy evaluated bowel cleansing quality on the Leighton-Rex scale and Colon Capsule CLEansing Assessment and Report (CC-CLEAR), respectively. All evaluations were reported on an image level. A total of 24 readers rated 500 images on each scale. RESULTS An expert opinion-based agreement standard could be set for poor and excellent cleansing but not for the spectrum in between, as the experts agreed on only a limited number of images representing fair and good cleansing. The overall interobserver agreement on the Leighton-Rex full scale was good (intraclass correlation coefficient (ICC) 0.84, 95% CI (0.82-0.85)) and remained good when stratified by experience level. On the full CC-CLEAR scale, the overall agreement was moderate (ICC 0.62, 95% CI (0.59-0.65)) and remained so when stratified by experience level. CONCLUSION The interobserver agreement was good for the Leighton-Rex scale and moderate for CC-CLEAR, irrespective of the reader's experience level. It was not possible to establish an expert-opinion standard of agreement for cleansing quality in CCE images. Dedicated training in using the scales may improve agreement and enable future algorithm calibration for artificial intelligence supported cleansing evaluation. TRIAL REGISTRATION All included images were derived from the CAREforCOLON 2015 trial (Registered with The Regional Health Research Ethics Committee (Registration number: S-20190100), the Danish data protection agency (Ref. 19/29858), and ClinicalTrials.gov (registration number: NCT04049357)).
Collapse
Affiliation(s)
- Benedicte Schelde-Olesen
- Department of Surgery, Odense University Hospital, Svendborg, Baagoes Alle 31, Svendborg 5700, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anastasios Koulaouzidis
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Surgery, Odense University Hospital, Svendborg, Denmark
- Department of Social Medicine and Public Health, Pomeranian Medical University, Szczecin, Poland
| | - Ulrik Deding
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Surgery, Odense University Hospital, Svendborg, Denmark
| | - Ervin Toth
- Department of Gastroenterology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Abraham Eliakim
- Department of Gastroenterology, Sheba Medical Center, Tel Aviv, Israel
| | - Cristina Carretero
- Department of Gastroenterology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Begoña González-Suárez
- Department of Gastroenterology, Endoscopy Unit, Hospital Clínic de Barceona, Barcelona, Spain
| | - Xavier Dray
- Center for Digestive Endoscopy, Sorbonne University, Saint Antoine Hospital, APHP, Paris, France
| | - Thomas de Lange
- Department of Medicine and Emergencies, Sahlgrenska University Hospital, Västre Götalandsregionen, Sweden
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanneke Beaumont
- Department of Gastroenterology & Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Uri Kopylov
- Department of Gastroenterology, Sheba Medical Center, Tel Aviv, Israel
| | - Pierre Ellul
- Division of Gastroenterology, Mater Dei Hospital, Msida, Malta
| | | | | | - Irene Stenfors
- Department of Hereditary Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Alejandro Bojorquez
- Department of Gastroenterology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Stefania Piccirelli
- Department of Gastroenterology and Digestive Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | | | | | - Isabel Barba
- Department of Gastroenterology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Salome Ouazana
- Center for Digestive Endoscopy, Sorbonne University, Saint Antoine Hospital, APHP, Paris, France
| | - Thomas Bjørsum-Meyer
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Surgery, Odense University Hospital, Svendborg, Denmark
| |
Collapse
|
2
|
Mota J, Almeida MJ, Mendes F, Martins M, Ribeiro T, Afonso J, Cardoso P, Cardoso H, Andrade P, Ferreira J, Mascarenhas M, Macedo G. From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy? Diagnostics (Basel) 2024; 14:291. [PMID: 38337807 PMCID: PMC10855436 DOI: 10.3390/diagnostics14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The role of capsule endoscopy and enteroscopy in managing various small-bowel pathologies is well-established. However, their broader application has been hampered mainly by their lengthy reading times. As a result, there is a growing interest in employing artificial intelligence (AI) in these diagnostic and therapeutic procedures, driven by the prospect of overcoming some major limitations and enhancing healthcare efficiency, while maintaining high accuracy levels. In the past two decades, the applicability of AI to gastroenterology has been increasing, mainly because of the strong imaging component. Nowadays, there are a multitude of studies using AI, specifically using convolutional neural networks, that prove the potential applications of AI to these endoscopic techniques, achieving remarkable results. These findings suggest that there is ample opportunity for AI to expand its presence in the management of gastroenterology diseases and, in the future, catalyze a game-changing transformation in clinical activities. This review provides an overview of the current state-of-the-art of AI in the scope of small-bowel study, with a particular focus on capsule endoscopy and enteroscopy.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Helder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Patrícia Andrade
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Digestive Artificial Intelligence Development, R. Alfredo Allen 455-461, 4200-135 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- ManopH Gastroenterology Clinic, R. de Sá da Bandeira 752, 4000-432 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
3
|
Mendes F, Mascarenhas M, Ribeiro T, Afonso J, Cardoso P, Martins M, Cardoso H, Andrade P, Ferreira JPS, Mascarenhas Saraiva M, Macedo G. Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy. Cancers (Basel) 2024; 16:208. [PMID: 38201634 PMCID: PMC10778030 DOI: 10.3390/cancers16010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Device-assisted enteroscopy (DAE) is capable of evaluating the entire gastrointestinal tract, identifying multiple lesions. Nevertheless, DAE's diagnostic yield is suboptimal. Convolutional neural networks (CNN) are multi-layer architecture artificial intelligence models suitable for image analysis, but there is a lack of studies about their application in DAE. Our group aimed to develop a multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. In total, 338 exams performed in two specialized centers were retrospectively evaluated, with 152 single-balloon enteroscopies (Fujifilm®, Porto, Portugal), 172 double-balloon enteroscopies (Olympus®, Porto, Portugal) and 14 motorized spiral enteroscopies (Olympus®, Porto, Portugal); then, 40,655 images were divided in a training dataset (90% of the images, n = 36,599) and testing dataset (10% of the images, n = 4066) used to evaluate the model. The CNN's output was compared to an expert consensus classification. The model was evaluated by its sensitivity, specificity, positive (PPV) and negative predictive values (NPV), accuracy and area under the precision recall curve (AUC-PR). The CNN had an 88.9% sensitivity, 98.9% specificity, 95.8% PPV, 97.1% NPV, 96.8% accuracy and an AUC-PR of 0.97. Our group developed the first multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. The development of accurate deep learning models is of utmost importance for increasing the diagnostic yield of DAE-based panendoscopy.
Collapse
Affiliation(s)
- Francisco Mendes
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
| | - Miguel Mascarenhas
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Afonso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
| | - Hélder Cardoso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Patrícia Andrade
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João P. S. Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, R. Alfredo Allen n°. 455/461, 4200-135 Porto, Portugal
| | | | - Guilherme Macedo
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
4
|
Mascarenhas M, Ribeiro T, Afonso J, Mendes F, Cardoso P, Martins M, Ferreira J, Macedo G. Smart Endoscopy Is Greener Endoscopy: Leveraging Artificial Intelligence and Blockchain Technologies to Drive Sustainability in Digestive Health Care. Diagnostics (Basel) 2023; 13:3625. [PMID: 38132209 PMCID: PMC10743290 DOI: 10.3390/diagnostics13243625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
The surge in the implementation of artificial intelligence (AI) in recent years has permeated many aspects of our life, and health care is no exception. Whereas this technology can offer clear benefits, some of the problems associated with its use have also been recognised and brought into question, for example, its environmental impact. In a similar fashion, health care also has a significant environmental impact, and it requires a considerable source of greenhouse gases. Whereas efforts are being made to reduce the footprint of AI tools, here, we were specifically interested in how employing AI tools in gastroenterology departments, and in particular in conjunction with capsule endoscopy, can reduce the carbon footprint associated with digestive health care while offering improvements, particularly in terms of diagnostic accuracy. We address the different ways that leveraging AI applications can reduce the carbon footprint associated with all types of capsule endoscopy examinations. Moreover, we contemplate how the incorporation of other technologies, such as blockchain technology, into digestive health care can help ensure the sustainability of this clinical speciality and by extension, health care in general.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| | - João Ferreira
- Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | - Guilherme Macedo
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal; (T.R.); (J.A.); (P.C.); (M.M.)
- WGO Training Center, 4200-437 Porto, Portugal
| |
Collapse
|