1
|
Vitulano C, Forcina G, Colosimo S, Frattolillo V, Villani AV, Marzuillo P, Miraglia Del Giudice E, Di Sessa A. A miRNA-Based Approach in Autosomal Dominant Polycystic Kidney Disease: Challenges and Insights from Adult to Pediatric Evidence. Mol Diagn Ther 2025; 29:183-193. [PMID: 39820940 DOI: 10.1007/s40291-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) represents the most common inherited kidney disorder leading to kidney failure in a significant percentage of patients over time. Although previously considered as an adult disease, robust evidence demonstrated that clinical manifestations might occur during childhood and adolescence. Therefore, early identification and treatment of the disease are of cardinal importance for pediatricians to ensure the best long-term outcomes. To date, licensed treatment options are limited but promising potential therapeutic targets are emerging. Among these, an intriguing pathophysiological role for microRNAs as small molecules with a critical role in regulating gene expression has been considered possible in ADPKD. Indeed, numerous circulating microRNAs have been found to be dysregulated in ADPKD, suggesting their potential role as biomarkers and therapeutic targets. Based on this background, further detailed insights into the mechanisms of miRNAs contributing to ADPKD development might pave the way for their effective application as a targeted treatment in young patients with ADPKD. We aimed to summarize the most recent evidence in this fascinating research area, providing a comprehensive overview of the current landscape of specific microRNAs in ADPKD as a potential innovative therapeutic strategy for these young patients.
Collapse
Affiliation(s)
- Caterina Vitulano
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Gianmario Forcina
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Simone Colosimo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Vittoria Frattolillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Annalisa Valentina Villani
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy.
| |
Collapse
|
2
|
Lapão T, Barata R, Jorge C, Flores C, Calado J. Autosomal Dominant Polycystic Kidney Disease Inflammation Biomarkers in the Tolvaptan Era. Int J Mol Sci 2025; 26:1121. [PMID: 39940890 PMCID: PMC11817632 DOI: 10.3390/ijms26031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
With the approval of tolvaptan as the first specific medicine for the treatment of rapidly progressive Autosomal Dominant Polycystic Kidney Disease (ADPKD), biomarker discovery has gained renewed interest as it is widely recognized that these will be crucial in clinical decision-making, serving as either prognostic or predictive tools. Since the marketing authorization was first issued in 2015 for ADPKD, tolvaptan has remained the sole pharmacological compound specifically targeting the disease. For ADPKD patients it is an invaluable medicine for retarding disease progression. Although the field of overall biomarker discovery and validation has been detailed in several publications, the role of inflammation remains largely overlooked in ADPKD. The current work aims to provide the reader with an updated review of inflammation biomarkers research in ADPKD, highlighting the role of urinary MCP-1 (monocyte chemoattractant protein-1) as the most promising tool.
Collapse
Affiliation(s)
- Tânia Lapão
- Unidade Local de Saúde São José, Serviço de Patologia Clínica, Centro Clínico Académico de Lisboa, 1150-199 Lisboa, Portugal; (T.L.); (C.F.)
- ToxOmics, NOVA Medical School, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Rui Barata
- Unidade Local de Saúde São José, Serviço de Nefrologia, Centro Clínico Académico de Lisboa, 1069-166 Lisboa, Portugal; (R.B.); (C.J.)
| | - Cristina Jorge
- Unidade Local de Saúde São José, Serviço de Nefrologia, Centro Clínico Académico de Lisboa, 1069-166 Lisboa, Portugal; (R.B.); (C.J.)
| | - Carlos Flores
- Unidade Local de Saúde São José, Serviço de Patologia Clínica, Centro Clínico Académico de Lisboa, 1150-199 Lisboa, Portugal; (T.L.); (C.F.)
| | - Joaquim Calado
- ToxOmics, NOVA Medical School, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
- Unidade Local de Saúde São José, Serviço de Nefrologia, Centro Clínico Académico de Lisboa, 1069-166 Lisboa, Portugal; (R.B.); (C.J.)
| |
Collapse
|
3
|
Uysal C, Koyuncu S, Ipekten F, Karakukcu C, Kocyigit I. The utility of serum neutrophil gelatinase-associated lipocalin level on predicting autosomal dominant polycystic kidney disease progression. Ther Apher Dial 2024; 28:760-768. [PMID: 38773764 DOI: 10.1111/1744-9987.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024]
Abstract
INTRODUCTION We focused on neutrophil gelatinase-associated lipocalin (NGAL) and autosomal dominant polycystic kidney disease (ADPKD) progression. METHODS ADPKD patients with an estimated glomerular filtration rate (eGFR) ≥ 30 mL/min/1.73 m2 were included. Serum NGAL level and NGAL to eGFR ratio (NGR), height-adjusted total kidney volume (hTKV) were assessed initially. Patients were followed-up for 5 years. RESULTS Sixty one patients were enrolled and initial eGFR was 73.6 (48.9-101.5) ml/min/1.73m2. EGFR declined by 3.7 mL/min/1.73m2 per year. Thirty four patients (55.7%) exhibited rapid progression. Rapid progression group had lower serum NGAL levels (p < 0.001) and higher hTKV (p < 0.001). Lower serum NGAL level was a risk factor for rapid progression (p < 0.001). NGR was not associated with rapid progression. Serum NGAL level was predictive in for rapid progression ROC analysis (cut-off <10.62 ng/mL). CONCLUSION Relatively lower serum NGAL levels can predict worse outcomes in ADPKD and can provide risk stratification in patients with ADPKD.
Collapse
Affiliation(s)
- Cihan Uysal
- Department of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Sumeyra Koyuncu
- Department of Nephrology, Kayseri City Hospital, Kayseri, Turkey
| | - Funda Ipekten
- Department of Biostatistics, Erciyes University School of Medicine, Kayseri, Turkey
| | - Cigdem Karakukcu
- Department of Biochemistry, Erciyes University School of Medicine, Kayseri, Turkey
| | - Ismail Kocyigit
- Department of Nephrology, Erciyes University School of Medicine, Kayseri, Turkey
| |
Collapse
|
4
|
Subhash S, Vijayvargiya S, Parmar A, Sandhu J, Simmons J, Raina R. Reactive Oxygen Species in Cystic Kidney Disease. Antioxidants (Basel) 2024; 13:1186. [PMID: 39456439 PMCID: PMC11504974 DOI: 10.3390/antiox13101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Polycystic kidney disease (PKD) is a rare but significant renal condition with major implications for global acute and chronic patient care. Oxidative stress and reactive oxygen species (ROS) can significantly alter its pathophysiology, clinical outcomes, and treatment, contributing to negative outcomes, including hypertension, chronic kidney disease, and kidney failure. Inflammation from ROS and existing cysts propagate the generation and accumulation of ROS, exacerbating kidney injury, pro-fibrotic signaling cascades, and interstitial fibrosis. Early identification and prevention of oxidative stress and ROS can contribute to reduced cystic kidney disease progression and improved longitudinal patient outcomes. Increased research regarding biomarkers, the pathophysiology of oxidative stress, and novel therapeutic interventions alongside the creation of comprehensive guidelines establishing methods of assessment, monitoring, and intervention for oxidative stress in cystic kidney disease patients is imperative to standardize clinical practice and improve patient outcomes. The integration of artificial intelligence (AI), genetic editing, and genome sequencing could further improve the early detection and management of cystic kidney disease and mitigate adverse patient outcomes. In this review, we aim to comprehensively assess the multifactorial role of ROS in cystic kidney disease, analyzing its pathophysiology, clinical outcomes, treatment interventions, clinical trials, animal models, and future directions for patient care.
Collapse
Affiliation(s)
- Sanat Subhash
- Department of Internal Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.S.); (J.S.)
| | - Sonya Vijayvargiya
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Aetan Parmar
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| | - Jazlyn Sandhu
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| | - Jabrina Simmons
- Department of Internal Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.S.); (J.S.)
| | - Rupesh Raina
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA; (A.P.); (J.S.)
| |
Collapse
|
5
|
de Souza Barcelos NE, Limeres ML, Peixoto-Dias AF, Vieira MAR, Peruchetti DB. Kidney Disease and Proteomics: A Recent Overview of a Useful Tool for Improving Early Diagnosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:173-186. [PMID: 38409421 DOI: 10.1007/978-3-031-50624-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Kidney disease is a critical and potentially life-threatening degenerative condition that poses a significant global public health challenge due to its elevated rates of morbidity and mortality. It manifests primarily in two distinct clinical forms: acute kidney injury (AKI) and chronic kidney disease (CKD). The development of these conditions hinges on a multitude of factors, including the etiological agents and the presence of coexisting medical conditions. Despite disparities in their underlying pathogenic mechanisms, both AKI and CKD can progress to end-stage kidney disease (ESKD). This advanced stage is characterized by organ failure and its associated complications, greatly increasing the risk of mortality. There is an urgent need to delve into the pathogenic mechanisms underlying these diseases and to identify novel biomarkers that can facilitate earlier diagnosis. Such early detection is crucial for enhancing the efficacy of therapy and impeding disease progression. In this context, proteomic approaches have emerged as invaluable tools for uncovering potential new markers of different pathological conditions, including kidney diseases. In this chapter, we overview the recent discoveries achieved through diverse proteomic techniques aimed at identifying novel molecules that may play a pivotal role in kidney diseases such as diabetic kidney disease (DKD), IgA nephropathy (IgAN), CKD of unknown origin (CKDu), autosomal dominant polycystic kidney disease (ADPKD), lupus nephritis (LN), hypertensive nephropathy (HN), and COVID-19-associated acute kidney injury (COVID-AKI).
Collapse
Affiliation(s)
- Nicolly Emanuelle de Souza Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Maria Laura Limeres
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Flavia Peixoto-Dias
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Maria Aparecida Ribeiro Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diogo B Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
- INCT-Nanobiofar, Belo Horizonte, MG, Brazil.
| |
Collapse
|