1
|
Lengkey R, Soetadji R, Sanjaya A. Use of angiotensin‑converting enzyme inhibitors in gynecological cancers: Pathways and mechanisms involved (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2024; 6:48. [DOI: 10.3892/wasj.2024.263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Roland Lengkey
- Department of Obstetrics and Gynecology, Unggul Karsa Medika Hospital, Maranatha Christian University, Bandung, West Java 40218, Indonesia
| | - Ray Soetadji
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia
| | - Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia
| |
Collapse
|
2
|
Garg P, Krishna M, Subbalakshmi AR, Ramisetty S, Mohanty A, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging biomarkers and molecular targets for precision medicine in cervical cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189106. [PMID: 38701936 DOI: 10.1016/j.bbcan.2024.189106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Madhu Krishna
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ayalur Raghu Subbalakshmi
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sravani Ramisetty
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Zhou X, Wang Y, Bao M, Chu Y, Liu R, Chen Q, Lin Y. Advanced detection of cervical cancer biomarkers using engineered filamentous phage nanofibers. Appl Microbiol Biotechnol 2024; 108:221. [PMID: 38372795 PMCID: PMC10876719 DOI: 10.1007/s00253-024-13058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Cervical cancer is a major global health concern, characterized by its high incidence and mortality rates. The detection of tumor markers is crucial for managing cancer, making treatment decisions, and monitoring disease progression. Vascular endothelial growth factor (VEGF) and programmed death-ligand 1 (PDL-1) are key targets in cervical cancer therapy and valuable biomarkers in predicting treatment response and prognosis. In this study, we found that combining the measurement of VEGF and soluble PDL-1 can be used for diagnosing and evaluating the progression of cervical cancer. To explore a more convenient approach for detecting and assessing cervical cancer, we designed and prepared an engineered fd bacteriophage, a human-safe viral nanofiber, equipped with two peptides targeting VEGF and PD-L1. The dual-display phage nanofiber specifically recognizes and binds to both proteins. Utilizing this nanofiber as a novel capture agent, we developed a new enzyme-linked immunosorbent assay (ELISA) method. This method shows significantly enhanced detection sensitivity compared to conventional ELISA methods, which use either anti-VEGF or anti-PD-L1 antibodies as capture agents. Therefore, the phage dual-display nanofiber presents significant potential in detecting cancer markers, evaluating medication efficacy, and advancing immunotherapy drug development. KEY POINTS: • The combined measurement of VEGF and soluble Programmed Death-Ligand 1(sPD-L1) demonstrates an additive effect in the diagnosis of cervical cancer. Fd phage nanofibers have been ingeniously engineered to display peptides that bind to VEGF and PD-L1, enabling the simultaneous detection of both proteins within a single assay • Genetically engineered phage nanofibers, adorned with two distinct peptides, can be utilized for the diagnosis and prognosis of cancer and can be mass-produced cost-effectively through bacterial infections • Employing dual-display fd phage nanofibers as capture probes, the phage ELISA method exhibited significantly enhanced detection sensitivity compared to traditional sandwich ELISA. Furthermore, phage ELISA facilitates the detection of a single protein or the simultaneous detection of multiple proteins, rendering them powerful tools for protein analysis and diagnosis across various fields, including cancer research.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yicun Wang
- Jilin Provincial Key Laboratory On Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China.
| | - Meijing Bao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yuqing Chu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Ruixue Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China
| | - Yang Lin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, 218 Ziqiang St, Changchun, 130041, Jilin, China.
| |
Collapse
|