1
|
Piqué-Borràs MR, Röhrl J, Künstle G. Herbal Amara extract induces gastric fundus relaxation via inhibition of the M2 muscarinic receptor. Neurogastroenterol Motil 2025; 37:e14924. [PMID: 39344827 DOI: 10.1111/nmo.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/05/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Impaired gastric accommodation is one of the most frequent symptoms of functional dyspepsia. The safety and efficacy of conventional treatments remain to be proven and alternative herbal therapies have been proposed to alleviate gastrointestinal symptoms. This preclinical study examined the role of herbal Amara extract (containing Artemisia absinthium, Centaurium erythraea, Cichorium intybus, Gentiana lutea, Juniperus communis, Achillea millefolium, Peucedanum ostruthium, Salvia officinalis, and Taraxacum extracts) on gastric (fundus) accommodation and the possible implication of muscarinic receptors in its regulation. METHODS The effect of Amara extract on fundus motility was investigated in organ baths of smooth muscle strips isolated from the fundus of guinea pigs, and the role of the muscarinic receptor pathway was evaluated using functional and radioligand binding assays in cell lines expressing the M2 or M3 muscarinic receptor. KEY RESULTS Amara extract inhibited carbachol-induced contraction of guinea pig smooth muscle strips in a dose-dependent manner. This relaxant effect was not affected by the M3 antagonist J-104129. Amara extract also inhibited M2, but not M3, receptor activity in CHO-K1 cells (IC50 219 μg mL-1), and specifically bound the M2 receptor (IC50 294 μg mL-1). Of the nine herbal components of Amara extract, Juniperus communis, P. ostruthium, and Salvia officinalis inhibited M2 receptor activity (IC50 32.0, 20.8, and 20.1 μg mL-1, respectively), and P. ostruthium was sufficient to reverse carbachol-induced ex vivo contraction of guinea pig fundic smooth muscles. CONCLUSION AND INFERENCES Amara extract relaxes gastric smooth muscles by inhibiting the M2 muscarinic receptor. This study suggests the potential benefit of Amara extract for patients with impaired gastric accommodation.
Collapse
Affiliation(s)
| | - Johann Röhrl
- Preclinical Research and Development, Weleda AG, Arlesheim, Switzerland
| | - Gerald Künstle
- Preclinical Research and Development, Weleda AG, Arlesheim, Switzerland
| |
Collapse
|
2
|
Irsal RAP, Gholam GM, Dwicesaria MA, Mansyah TF, Chairunisa F. Computational exploration of palmitoyl-protein thioesterase 1 inhibition by Juniperus phoenicea L. for anti-dementia treatment. J Taibah Univ Med Sci 2024; 19:1165-1180. [PMID: 39807377 PMCID: PMC11728884 DOI: 10.1016/j.jtumed.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Objectives Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated Juniperus phoenicea L., a plant used in traditional Chinese medicine, as a potential inhibitor of palmitoyl-protein thioesterase 1 (PPT1), an enzyme associated with dementia. Methods J. phoenicea phytochemicals were subjected to in silico docking against PPT1 (PDB ID: 1EH5). Docking simulations were performed in YASARA Structure with VINA scoring. Top-ranked ligands were subjected to ADMET analysis (admetlab 2.0, Protox 3.0) and PASS bioactivity prediction. Stability and reactivity were analyzed with DFT calculations (Gaussian 09), and 500 ns MD simulations (YASARA Structure, AMBER 14 force field) to assess protein-ligand complex stability. MM-PBSA was used to calculate binding free energies. Results The docking simulations identified amentoflavone (-9.6 kcal/mol) as the top hit, followed by ferruginol and quercetin 3-O-pentoside. Amentoflavone formed the most interactions (19) with PPT1. In silico toxicity analysis predicted amentoflavone and quercetin 3-O-pentoside to be safe, whereas ferruginol violated the Pfizer rule. The PASS server indicated a higher probability of activity for quercetin 3-O-pentoside (0.423) than amentoflavone (0.287) for dementia treatment. DFT calculations revealed similar electronic properties for both ligands, although amentoflavone showed slightly more favorable values. MD simulations demonstrated that amentoflavone, compared with to galantamine, had superior binding stability in the PPT1 binding pocket. Conclusion This in silico study was aimed at identifying potential inhibitors of PPT1 from J. phoenicea phytochemicals, given that PPT1 is a target for developing new dementia medications. Our findings identified amentoflavone as a promising candidate for further investigation. These findings warrant further research to validate this compound's potential as a PPT1 inhibitor for dementia treatment.
Collapse
Affiliation(s)
- Riyan A. Putera Irsal
- Departement of Curriculum and Research, Biomatics, Bogor, West Java, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Gusnia Meilin Gholam
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics, Malang, Indonesia
| | - Maheswari Alfira Dwicesaria
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Tiyara F. Mansyah
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | | |
Collapse
|
3
|
Jojić AA, Liga S, Uţu D, Ruse G, Suciu L, Motoc A, Şoica CM, Tchiakpe-Antal DS. Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3233. [PMID: 39599442 PMCID: PMC11598787 DOI: 10.3390/plants13223233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Common Juniper (Juniperus communis L.) is a gymnosperm that stands out through its fleshy, spherical female cones, often termed simply "berries". The cone berries and various vegetative parts (leaves, twigs and even roots) are used in traditional phytotherapy, based on the beneficial effects exerted by a variety of secondary metabolites. While the volatile compounds of Juniperus communis are known for their aromatic properties and have been well-researched for their antimicrobial effects, this review shifts focus to non-volatile secondary metabolites-specifically diterpenes, lignans, and biflavonoids. These compounds are of significant biomedical interest due to their notable pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. The aim of this review is to offer an up-to-date account of chemical composition of Juniperus communis and related species, with a primary emphasis on the bioactivities of diterpenes, lignans, and biflavonoids. By examining recent preclinical and clinical data, this work assesses the therapeutic potential of these metabolites and their mechanisms of action, underscoring their value in developing new therapeutic options. Additionally, this review addresses the pharmacological efficacy and possible therapeutic applications of Juniperus communis in treating various human diseases, thus supporting its potential role in evidence-based phytotherapy.
Collapse
Affiliation(s)
- Alina Arabela Jojić
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Sergio Liga
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, 6 Vasile Parvan, 300223 Timisoara, Romania
| | - Diana Uţu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
| | - Graţiana Ruse
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Liana Suciu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
| | - Andrei Motoc
- Department of Anatomy-Embryology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Codruța Marinela Şoica
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Diana-Simona Tchiakpe-Antal
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
4
|
Hoisang S, Jitpean S, Seesupa S, Kamlangchai P, Makpunpol T, Ngowwatana P, Chaimongkol S, Khunbutsri D, Khlongkhlaeo J, Kampa N. Evaluation of Totarol for Promoting Open Wound Healing in Dogs. Vet Sci 2024; 11:437. [PMID: 39330816 PMCID: PMC11435550 DOI: 10.3390/vetsci11090437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigates the susceptibility of common pathogens to totarol and assesses its clinical effectiveness in promoting wound healing in client-owned dogs with open wounds. Twenty-three client-owned dogs with open wounds were divided into two groups: (1) the treatment group (T-group) and (2) the control group (C-group). Clinical samples were collected from the wounds for the bacterial identification and determination of the minimum inhibitory concentrations (MICs) of totarol. In the T-group, wounds were treated with standard wound care together with the application at a dosage of 0.3 mL (two sprays) of commercial totarol product per 25 cm2 of the wound area. The C-group received only standard wound care. This in vitro study found that totarol exhibited antimicrobial activity against both standard pathogens and clinical wound pathogens. The MIC values of totarol dissolved in absolute ethyl alcohol were 4 µg/mL for Gram-positive pathogens and ranged from 256 to 512 µg/mL for Gram-negative pathogens. However, the MIC values of the commercial totarol product ranged from 512 to 1024 for both Gram-positive and Gram-negative pathogens. Clinically, the use of a commercial totarol product as an adjunctive therapy significantly improved wound healing, as indicated by a greater percentage of wound area reduction (p < 0.05). From day 2 to day 7 of the treatment, the percentage of wound area reduction differed significantly between the T-group and the C-group. At the end of the study, the average percentage of wound area reduction was 69.18% ± 18.12 and 41.50% ± 20.23 in the T-group and C-group, respectively. The finding of this study illustrates the antimicrobial properties of totarol and its product against prevalent wound pathogens. These results suggest the potential of totarol as an adjunctive option for canine wound care.
Collapse
Affiliation(s)
- Somphong Hoisang
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supranee Jitpean
- Division of Surgery, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suvaluk Seesupa
- Division of Surgery, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Phanthit Kamlangchai
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tossawarn Makpunpol
- Residency Training Program in Veterinary Surgery, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pimsiri Ngowwatana
- Residency Training Program in Veterinary Surgery, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saikam Chaimongkol
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Duangdaow Khunbutsri
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jeerasak Khlongkhlaeo
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Naruepon Kampa
- Division of Surgery, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Larit F, León F. Therapeutics to Treat Psychiatric and Neurological Disorders: A Promising Perspective from Algerian Traditional Medicine. PLANTS (BASEL, SWITZERLAND) 2023; 12:3860. [PMID: 38005756 PMCID: PMC10674704 DOI: 10.3390/plants12223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Ancient people sought out drugs in nature to prevent, cure, and treat their diseases, including mental illnesses. Plants were their primary source for meeting their healthcare needs. In Algeria, folk medicine remains a fundamental part of the local intangible knowledge. This study aims to conduct a comprehensive ethnomedicinal investigation and documentation of medicinal plants and the different plant formulations traditionally used in Algeria for the treatment of pain, psychiatric, and neurological disorders. It also intends to improve the current knowledge of Algerian folk medicine. Several scientific databases were used to accomplish this work. Based on this investigation, we identified 82 plant species belonging to 69 genera and spanning 38 distinct botanical families used as remedies to treat various psychological and neurological conditions. Their traditional uses and methods of preparation, along with their phytochemical composition, main bioactive constituents, and toxicity were noted. Therefore, this review provides a new resource of information on Algerian medicinal plants used in the treatment and management of neurological and psychological diseases, which can be useful not only for the documentation and conservation of traditional knowledge, but also for conducting future phytochemical and pharmacological studies.
Collapse
Affiliation(s)
- Farida Larit
- Laboratoire d’Obtention de Substances Thérapeutiques (LOST), Université Frères Mentouri-Constantine 1, Route de Ain El Bey, Constantine 25017, Algeria
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
6
|
Xu S, Chen Q, Luo N, Yang J, Li D. Effects of age and tissue of Juniperus sabina L. on its phytochemical characteristics, anti-cholinesterase, antidiabetes, and anti-drug resistant bacteria activities. FRONTIERS IN PLANT SCIENCE 2023; 14:1174922. [PMID: 37731973 PMCID: PMC10507269 DOI: 10.3389/fpls.2023.1174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023]
Abstract
Juniperus sabina L. is used in the traditional Chinese medicine (TCM) system to prevent or treat various diseases. However, only the leaves and branches are used as medicinal parts. The aim of this study was to compare the chemical characteristics of different tissues (leaves, branches, stems, and roots) of J. sabina at different ages by HPLC-MS and to evaluate the biological activity (enzyme inhibition, anti-drug-resistant bacteria). Total phenol (TPC) and total lignan (TLC) contents in J. sabina were determined by Folin-Ciocalteu method and UV spectrophotometry, respectively. High levels of total phenols (87.16 mg GAE/g dry weight) and total lignans (491.24 mg PPT/g dry weight) were detected in fifteen annual J. sabina roots and current year leaves, respectively. Eleven compounds, of which six were phenolic compounds and five were lignans, were identified and quantified by HPLC/HPLC-MS. Statistical analysis showed that the distribution and content of the detected compounds showed considerable variation among ages and tissues, and that the current year leaves of fifteen annual J. sabina could be used as a potential application site for the source of podophyllotoxin. Acetylcholinesterase (AChE) inhibitory activity was found to be the highest on the extracts of fifteen annual J. sabina current year leaves (47.37 μg/mL), while the highest inhibition towards butyrylcholinesterase (BChE) was observed for the extracts of seven annual J. sabina previous year leaves (136.3 μg/mL). And the second annual J. sabina current year stem's extracts showed the best antidiabetic activity (anti-α-glucosidase, 62.59 μg/mL). In addition, the extracts of fifteen annual J. sabina roots (47.37 μg/mL) showed the highest anti-MRSA activity (31.25 μg/mL). Redundancy analysis (RDA) was conducted to clarify the factors affecting the biological activity of J. sabina, and its results showed that epicatechin and matairesinol showed positive promotion. This study provides a new perspective for understanding the chemical differences and comprehensive utilization of different tissues of J. sabina.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Qian Chen
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Na Luo
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Jinyan Yang
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Xu S, Li X, Liu S, Tian P, Li D. Juniperus sabina L. as a Source of Podophyllotoxins: Extraction Optimization and Anticholinesterase Activities. Int J Mol Sci 2022; 23:ijms231810205. [PMID: 36142118 PMCID: PMC9499582 DOI: 10.3390/ijms231810205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Juniperus sabina L. (J. sabina) has been an important plant in traditional medicine since ancient times. Its needles are rich in podophyllotoxin, a precursor compound to anti-tumor drugs. However, no systematic research has been done on J. sabina as a source of podophyllotoxins or their biological action. Hence, extracts of podophyllotoxin and deoxypodophyllotoxin were the main optimization targets using the Box–Behnken design (BBD) and response surface methodology (RSM). The total phenol content and antioxidant activity of J. sabina needle extract were also optimized. Under the optimal process conditions (ratio of material to liquid (RLM) 1:40, 90% methanol, and ultrasonic time 7 min), the podophyllotoxin extraction rate was 7.51 mg/g DW, the highest level reported for Juniperus spp. distributed in China. To evaluate its biological potential, the neuroprotective acetyl- and butyrylcholinease (AChE and BChE) inhibitory abilities were tested. The needle extract exhibited significant anti-butyrylcholinesterase activity (520.15 mg GALE/g extract), which correlated well with the high levels of podophyllotoxin and deoxypodophyllotoxin. This study shows the potential medicinal value of J. sabina needles.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Forestry, Northwest A & F University, Xianyang 712100, China
| | - Xinru Li
- College of Forestry, Northwest A & F University, Xianyang 712100, China
| | - Shi Liu
- College of Forestry, Northwest A & F University, Xianyang 712100, China
| | - Peilin Tian
- College of Forestry, Northwest A & F University, Xianyang 712100, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Xianyang 712100, China
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Xianyang 712100, China
- Correspondence: ; Tel.: +86-029-87082230
| |
Collapse
|
8
|
Alghamdi MD, Nazreen S, Ali NM, Amna T. ZnO Nanocomposites of Juniperus procera and Dodonaea viscosa Extracts as Antiproliferative and Antimicrobial Agents. NANOMATERIALS 2022; 12:nano12040664. [PMID: 35214995 PMCID: PMC8875860 DOI: 10.3390/nano12040664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023]
Abstract
Cancer and microbial infections constitute a major burden and leading cause of death globally. The development of therapeutic compounds from natural products is considered a cornerstone in drug discovery. Therefore, in the present study, the ethanolic extract and the fractions of Dodonaea viscosa and Juniperus procera were evaluated for anticancer and antimicrobial activities. It was found that two fractions, JM and DC, exhibited promising anticancer and antimicrobial activities. The JM and DC fractions were further modified into ZnO nanocomposites, which were characterized by SEM, XRD, TGA, and EDX. It was noted that the synthesized nanocomposites displayed remarkable enhancement in cytotoxicity as well as antibacterial activity. Nanocomposite DC–ZnO NRs exhibited cytotoxicity with IC50 values of 16.4 ± 4 (HepG2) and 29.07 ± 2.7 μg/mL (HCT-116) and JM–ZnO NRs with IC50 values of 12.2 ± 10.27 (HepG2) and 24.1 ± 3.0 μg/mL (HCT-116). In addition, nanocomposites of DC (i.e., DC–ZnO NRs) and JM (i.e., JM–ZnO NRs) displayed excellent antimicrobial activity against Staphylococcus aureus with MICs of 2.5 and 1.25 μg/mL, respectively. Moreover, these fractions and nanocomposites were tested for cytotoxicity against normal fibroblasts and were found to be non-toxic. GC-MS analysis of the active fractions were also carried out to discover the possible phytochemicals that are responsible for these activities.
Collapse
Affiliation(s)
- Maha D. Alghamdi
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
| | - Syed Nazreen
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
- Correspondence: (S.N.); (T.A.)
| | - Nada M. Ali
- Chemistry Department, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia; (M.D.A.); (N.M.A.)
| | - Touseef Amna
- Department of Biology, Faculty of Science, Albaha University, P.O. Box 1988, Albaha 65799, Saudi Arabia
- Correspondence: (S.N.); (T.A.)
| |
Collapse
|
9
|
Sarkar C, Chaudhary P, Jamaddar S, Janmeda P, Mondal M, Mubarak MS, Islam MT. Redox Activity of Flavonoids: Impact on Human Health, Therapeutics, and Chemical Safety. Chem Res Toxicol 2022; 35:140-162. [PMID: 35045245 DOI: 10.1021/acs.chemrestox.1c00348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cost-effectiveness of presently used therapies is a problem in overall redox-based management, which is posing a significant financial burden on communities across the world. As a result, sophisticated treatment models that provide notions of predictive diagnoses followed by targeted preventive therapies adapted to individual patient profiles are gaining global acclaim as being beneficial to patients, the healthcare sector, and society as a whole. In this context, natural flavonoids were considered due to their multifaceted antioxidant, anti-inflammatory, and anticancer effects as well as their low toxicity and ease of availability. The aim of this review is to focus on the capacity of flavonoids to modulate the responsiveness of various diseases and ailments associated with redox toxicity. The review will also focus on the flavonoids' pathway-based redox activity and the advancement of redox-based therapies as well as flavonoids' antioxidant characteristics and their influence on human health, therapeutics, and chemical safety. Research findings indicated that flavonoids significantly exhibit various redox-based therapeutic responses against several diseases such as inflammatory, neurodegenerative, cardiovascular, and hepatic diseases and various types of cancer by activating the Nrf2/Keap1 transcription system, suppressing the nuclear factor κB (NF-κB)/IκB kinase inflammatory pathway, abrogating the function of the Hsp90/Hsf1 complex, inhibiting the PTEN/PI3K/Akt pathway, and preventing mitochondrial dysfunction. Some flavonoids, especially genistein, apigenin, amentoflavone, baicalein, quercetin, licochalcone A, and biochanin A, play a potential role in redox regulation. Conclusions of this review on the antioxidant aspects of flavonoids highlight the medicinal and folk values of these compounds against oxidative stress and various diseases and ailments. In short, treatment with flavonoids could be a novel therapeutic invention in clinical trials, as we hope.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
10
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
11
|
Innate Immunomodulatory Activity of Cedrol, a Component of Essential Oils Isolated from Juniperus Species. Molecules 2021; 26:molecules26247644. [PMID: 34946725 PMCID: PMC8709035 DOI: 10.3390/molecules26247644] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/05/2022] Open
Abstract
Little is known about the immunomodulatory activity of essential oils isolated from Juniperus species. Thus, we isolated essential oils from the cones and leaves of eight juniper species found in Montana and in Kazakhstan, including J. horizontalis, J. scopolorum, J. communis, J. seravschanica, J. sabina, J. pseudosabina, J. pseudosabina subsp. turkestanica, and J. sibirica. We report here the chemical composition and innate immunomodulatory activity of these essential oils. Compositional analysis of the 16 samples of Juniper essential oils revealed similarities and differences between our analyses and those previously reported for essential oils from this species. Our studies represent the first analysis of essential oils isolated from the cones of four of these Juniper species. Several essential oil samples contained high levels of cedrol, which was fairly unique to three Juniper species from Kazakhstan. We found that these essential oils and pure (+)-cedrol induced intracellular Ca2+ mobilization in human neutrophils. Furthermore, pretreatment of human neutrophils and N-formyl peptide receptor 1 and 2 (FPR1 and FPR2) transfected HL60 cells with these essential oils or (+)-cedrol inhibited agonist-induced Ca2+ mobilization, suggesting these responses were desensitized by this pretreatment. In support of this conclusion, pretreatment with essential oils from J. seravschanica cones (containing 16.8% cedrol) or pure (+)-cedrol inhibited human neutrophil chemotaxis to N-formyl peptide. Finally, reverse pharmacophore mapping predicted several potential kinase targets for cedrol. Thus, our studies have identified cedrol as a novel neutrophil agonist that can desensitize cells to subsequent stimulation by N-formyl peptide.
Collapse
|
12
|
Tanaka N, Kashiwada Y. Phytochemical studies on traditional herbal medicines based on the ethnopharmacological information obtained by field studies. J Nat Med 2021; 75:762-783. [PMID: 34255289 PMCID: PMC8397699 DOI: 10.1007/s11418-021-01545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
Traditional herbal medicines, which have been used in the matured traditional medical systems as well as those have been used in ethnic medical systems, are invaluable resources of drug seeds. Ethnobotanical and ethnopharmacological survey may provide useful information of these herbal medicines, which are valuable for searching new bioactive molecules. From this viewpoint, we have been performing the ethnobotanical and ethnopharmacological field studies in Yunnan Province and Guangxi Zhuang Autonomous Region, China, and Mongolia. Phytochemical studies on traditional herbal medicines were performed based on the information obtained by our ethnobotanical survey. Herbal medicines used in Uzbekistan and Bangladesh were also investigated on the basis of the ethnopharmacological information obtained from collaborative researchers in the respective regions. Some studies were carried out for searching active substance(s) based on bioassay-guided fractionation and isolation. Over 150 new molecules were isolated in these studies, and their various biological activities were also demonstrated. This review summarizes the results of phytochemical studies of those traditional herbal medicines as well as biological activities of the isolated molecules.
Collapse
Affiliation(s)
- Naonobu Tanaka
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yoshiki Kashiwada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
13
|
Ghramh HA, Ibrahim EH, Kilnay M. Majra Honey Abrogated the Normal and Cancer Cells Proliferation Inhibition by Juniperus procera Extract and Extract/Honey Generated AgNPs. Anticancer Agents Med Chem 2021; 20:970-981. [PMID: 32053084 DOI: 10.2174/1871520620666200213104224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/04/2020] [Accepted: 01/29/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Juniperus procera and Majra honey are well-known as a folk medicine in many countries. OBJECTIVES This work aimed to study the immunomodulatory effects after mixing Majra honey, J. procera water leaves extract and silver Nanoparticles (AgNPs) on immune or cancer cells. METHODS Juniperus procera water leaves extract and 20% Majra honey were prepared. Both the extract and honey were used separately to synthesize AgNPs. AgNPs were characterized using UV/Vis spectrophotometry and electron microscopy. Bioactive molecules in honey and the extract were explored using Fourier Transform Infrared (FT-IR) spectroscopy. Protein profile of honey was explored using Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS-PAGE) and honey sugar content was determined using High- Performance Liquid Chromatography (HPLC). Biological activities of honey and the extract were tested. RESULTS The results demonstrated the ability of the extract/honey to produce AgNPs in a spherical shape. The extract/honey contained many functional groups. SDS-PAGE of Majra honey showed many protein bands. HPLC revealed honey is of good quality and no external additives are added to it. The extract and extract+ AgNPs inhibited the growth of normal rat splenic cells while honey stimulated it. The extract+honey turned stimulatory to the splenic cells' growth and significantly diminished the inhibitory potential of the extract containing AgNPs. Both the extract and honey have antimicrobial activities, this potential increased in the presence of AgNPs. Honey and Honey+AgNPs inhibited HepG2 cancer cell proliferation while Hela cell growth inhibited only with honey+AgNPs. CONCLUSION Both honey and the extract have antibacterial and immunomodulatory potentials as well as the power to produce AgNPs. Majra honey alone showed anticancer activity against HepGe2 cells, but not against Hela cells, and when contained AgNPs had anticancer activity on both cell lines. Mixing of Majra honey with J. procera extract showed characterized immunomodulatory potentials that can be described as immunostimulant.
Collapse
Affiliation(s)
- Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Essam H Ibrahim
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mona Kilnay
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
14
|
Bhardwaj K, Silva AS, Atanassova M, Sharma R, Nepovimova E, Musilek K, Sharma R, Alghuthaymi MA, Dhanjal DS, Nicoletti M, Sharma B, Upadhyay NK, Cruz-Martins N, Bhardwaj P, Kuča K. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021; 26:3005. [PMID: 34070179 PMCID: PMC8158490 DOI: 10.3390/molecules26103005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers' phytochemicals and illustrates their potential role as drugs.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Square Aldo Moro, 5, 00185 Rome, Italy;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India;
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| |
Collapse
|
15
|
Talebi M, Talebi M, Farkhondeh T, Samarghandian S. Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. Phytother Res 2021; 35:1739-1753. [DOI: 10.1002/ptr.6905] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 02/01/2023]
Abstract
Thymoquinone is a monoterpenoid compound, which is derived from volatile and fixed oil of Nigella sativa (Ranunculaceae). This phytochemical compound has several biological effects, including antioxidant, antibacterial, antineoplastic, nephroprotective, hepatoprotective, gastroprotective, neuroprotective, anti‐nociceptive, and anti‐inflammatory activities. Thymoquinone shows pharmacological activities, including anti‐hepatocellular carcinoma, nephroprotection, neuroprotection, retina protection, gastroprotection, cardioprotection, anti‐allergy, reproductive system protection, bladder protection, and respiratory protection. It was found that these beneficial effects are mostly related to modulation of the Nrf2 signaling pathway by blockage of Keap1, stimulating the expression of the Nrf2 gene, and inducing the nuclear translocation of Nrf2. In the present review, the therapeutic effects of thymoquinone are overviewed through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry University of Texas at Arlington Arlington Texas United States
- Mylan Pharmaceuticals Inc San Antonio Texas United States
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC) Birjand University of Medical Sciences (BUMS) Birjand Iran
- Faculty of Pharmacy Birjand University of Medical Sciences Birjand Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center Neyshabur University of Medical Sciences Neyshabur Iran
| |
Collapse
|
16
|
Monribot-Villanueva JL, Rodríguez-Fuentes JS, Landa-Cansigno C, Infante-Rodríguez DA, Díaz-Abad JP, Guerrero-Analco JA. Comprehensive profiling and identification of bioactive components from methanolic leaves extract of Juniperus deppeana and its in vitro antidiabetic activity. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Juniperus plant species are rich sources of bioactive secondary metabolites and are traditionally used for the treatment of several illnesses, including those related to hyperglycemia and diabetes. The major bioactive compounds identified in certain species of this genus are terpenes and phenolics. Juniperus deppeana Steud. is mainly used as a wood resource and its chemical composition has been partially established. Our goal was to perform a comprehensive profiling of a methanolic extract of leaves of J. deppeana and determine its potential as a source of α-amylase and α-glucosidase inhibitors. Terpene and phenolic compounds were putatively identified based on their accurate mass spectrometric data. Regarding terpenes, we found mainly diterpenes, specifically dehydroabietic acid-like, hinokiol-like, agathic acid-like, and dihydroxyabietatrienoic acid-like compounds. Isopimaric acid was also identified and its identity was confirmed by coelution with an authentic standard via comparing retention time, mass spectrum, and collisional cross section values. For phenolic compounds, we identified mainly compounds with a chemical structure similar to the biflavonoids amentoflavone and bilobetin. Besides, the methanolic extract of J. deppeana leaves show inhibition of α-amylase (IC50 = 85.11 ± 11.91 μg mL−1) and α-glucosidase (IC50 = 32.50 ± 3.40 μg mL−1) enzymes, demonstrating a potential alternative for the search of antidiabetic natural products.
Collapse
Affiliation(s)
- Juan L. Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
| | - Jonathan S. Rodríguez-Fuentes
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
| | - Cristina Landa-Cansigno
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
| | - Dennis A. Infante-Rodríguez
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
| | - Juan P. Díaz-Abad
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
| | - José A. Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, 91073, Mexico
| |
Collapse
|
17
|
Kahraman T, Berköz M, Allahverdiyev O, Mahmood EA, Yıldırım M, Yalın S. Can Juniperus communis L. oil improve nephropathy in diabetic rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2019. [DOI: 10.33808/clinexphealthsci.543272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Oliveira I, Nunes A, Lima A, Borralho P, Rodrigues C, Ferreira RB, Ribeiro AC. New Lectins from Mediterranean Flora. Activity against HT29 Colon Cancer Cells. Int J Mol Sci 2019; 20:ijms20123059. [PMID: 31234551 PMCID: PMC6627736 DOI: 10.3390/ijms20123059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
Experiments conducted in vitro and in vivo, as well as some preclinical trials for cancer therapeutics, support the antineoplastic properties of lectins. A screening of antitumoral activity on HT29 colon cancer cells, based on polypeptide characterization and specific lectin binding to HT29 cells membrane receptors, was performed in order to assess the bioactivities present in four Mediterranean plant species: Juniperus oxycedrus subsp. oxycedrus, Juniperus oxycedrus subsp. badia, Arbutus unedo and Corema album. Total leaf proteins from each species were evaluated with respect to cell viability and inhibitory activities on HT29 cells (cell migration, matrix metalloproteinase –MMP proteolytic activities). A discussion is presented on a possible mechanism justifying the specific binding of lectins to HT29 cell receptors. All species revealed the presence of proteins with affinity to HT29 cell glycosylated receptors, possibly explaining the differential antitumor activity exhibited by the two most promising species, Juniperus oxycedrus subsp. badia and Arbutus unedo.
Collapse
Affiliation(s)
- Isabel Oliveira
- Department of Toxicological and Bromatological Sciences (DCTB), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| | - António Nunes
- Department of Toxicological and Bromatological Sciences (DCTB), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| | - Ana Lima
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| | - Pedro Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Cecília Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Ricardo Boavida Ferreira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| | - Ana Cristina Ribeiro
- Department of Toxicological and Bromatological Sciences (DCTB), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
- Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, Universidade de Lisboa, 1349-017y Lisboa, Portugal.
| |
Collapse
|
19
|
Biological Potential and Medical Use of Secondary Metabolites. MEDICINES 2019; 6:medicines6020066. [PMID: 31212776 PMCID: PMC6632032 DOI: 10.3390/medicines6020066] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
This Medicines special issue focuses on the great potential of secondary metabolites for therapeutic applications. The special issue contains 16 articles reporting relevant experimental results and overviews of bioactive secondary metabolites. Their biological effects and new methodologies that improve the lead compounds’ synthesis were also discussed. We would like to thank all 83 authors, from all over the world, for their valuable contributions to this special issue.
Collapse
|
20
|
Structural Characterization and Anti-Proliferation Activities Against Tumor Cells of an Arabinogalactan from Juniperus convallium. Molecules 2019; 24:molecules24101850. [PMID: 31091760 PMCID: PMC6571648 DOI: 10.3390/molecules24101850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
As a hyperproliferative disorder, cancer has continued to be a major public health challenge. In the present study, a polysaccharide JC-PS1 was isolated and purified from Juniperus convallium. JC-PS1 is a heteropolysaccharide composed of Ara, Gal, GalA and Rha with the average molecular weight of 280 kDa. Based on the methylation and 2D NMR analysis, JC-PS1 was elucidated as a backbone of →5)-α-Araf-(1→ and →3,5)-α-Araf-(1→, and three kinds of branches attached to the O-3 position of →3,5)-α-Araf-(1→, including β-GalpA-(1→3)-β-Galp-(1→, α-Araf-(1→3)-α-Rhap-(1→ and α-Araf-(1→3)-β-Galp-(1→. Accordingly, the atomic force microscopy of JC-PS1 showed a linear filamentous structure with small proportion of branches. Furthermore, JC-PS1 exhibited significant anti-proliferation activities against PANC-1, A431, MDA-MB-231, U118MG and H1975 cells with the IC50 values of 296.8, 477.9, 657.4, 686.7 and 862.1 μg/mL, respectively. This indicated that JC-PS1 could be a potential therapeutic agent for the treatment of cancer.
Collapse
|