1
|
Dubey P, Manjit, Rani A, Mittal N, Mishra B. In-silico exploration of Attukal Kizhangu L. compounds: Promising candidates for periodontitis treatment. Comput Biol Chem 2024; 113:108186. [PMID: 39255627 DOI: 10.1016/j.compbiolchem.2024.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/21/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
A medicinal pteridophyte known as Attukal Kizhangu L. has been used to cure patients for centuries by administering plant parts based on conventional and common practices. Regarding its biological functions, significant use and advancement have been made. Extract of Attukal Kizhangu L. is the subject of the current study, which uses network pharmacology as its foundation. Three targeted compounds such as α-Lapachone, Dihydrochalcone, and Piperine were chosen for additional research from the 17 Phytoconstituents that were filtered out by the Coupled UPLC-HRMS study since they followed to Lipinski rule and showed no toxicity. The pharmacokinetics and physicochemical properties of these targeted compounds were analyzed by using three online web servers pkCSM, Swiss ADME, and Protox-II. This is the first in silico study to document these compound's effectiveness against the standard drug DOX in treating Periodontitis. The Swiss target prediction database was used to retrieve the targets of these compounds. DisGeNET and GeneCards were used to extract the targets of periodontitis. The top five hub genes were identified by Cytoscape utilizing the protein-protein interaction of common genes, from which two hub genes and three binding proteins of collagenase enzymes were used for further studies AA2, PGE2, PI2, TNFA, and PGP. The minimal binding energy observed in molecular docking, indicative of the optimal docking score, corresponds to the highest affinity between the protein and ligand. To corroborate the findings of the docking study, molecular dynamics (MD) simulations, and MMPBSA calculations were conducted for the complexes involving AA2-α-LPHE, AA2-DHC, and AA2-PPR. This research concluded that AA2-DHC was the most stable complex among the investigated interactions, surpassing the stability of the other complexes examined in comparison with the standard drug DOX. Overall, the findings supported the promotion of widespread use of Attukal Kizhangu L. in clinics as a potential therapeutic agent or may be employed for the treatment of acute and chronic Periodontitis.
Collapse
Affiliation(s)
- Pragati Dubey
- Faculty of Dental Sciences, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Asha Rani
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Neelam Mittal
- Faculty of Dental Sciences, Institute of Medical Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, (BHU), Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
2
|
Dipalma G, Inchingolo AM, Latini G, Ferrante L, Nardelli P, Malcangi G, Trilli I, Inchingolo F, Palermo A, Inchingolo AD. The Effectiveness of Curcumin in Treating Oral Mucositis Related to Radiation and Chemotherapy: A Systematic Review. Antioxidants (Basel) 2024; 13:1160. [PMID: 39456414 PMCID: PMC11504953 DOI: 10.3390/antiox13101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Chemotherapy (CT) and radiation therapy (RT), while effective against cancer, often cause severe side effects, such as oral mucositis and other oral diseases. Oral mucositis, characterized by inflammation and ulceration of the oral mucosa, is one of the most painful side effects that can reduce quality of life and limit cancer treatment. Curcumin, a polyphenol from Curcuma longa, has garnered attention for its anti-inflammatory, antioxidant, and anti-carcinogenic properties, which protect the oral mucosa by reducing oxidative stress and modulating inflammation. This study reviews the therapeutic potential of curcumin in preventing and managing oral mucositis caused by CT and RT. Clinical trials show curcumin's effectiveness in reducing the incidence and severity of oral mucositis. Although curcumin supplementation appears to be a promising and cost-effective approach for mitigating oral complications in cancer patients, further clinical trials are needed to confirm its efficacy and optimize dosing strategies.
Collapse
Affiliation(s)
- Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (A.M.I.); (G.L.); (L.F.); (P.N.); (I.T.); (A.D.I.)
| |
Collapse
|
3
|
Qin Z, Han Y, Du Y, Zhang Y, Bian Y, Wang R, Wang H, Guo F, Yuan H, Pan Y, Jin J, Zhou Q, Wang Y, Han F, Xu Y, Jiang J. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1010-1026. [PMID: 38489007 DOI: 10.1007/s11427-023-2454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 03/17/2024]
Abstract
Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yixuan Zhang
- Gusu school, Nanjing medical university, Suzhou, 215002, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiandong Jiang
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
4
|
Atalay M, Uslu MÖ, İçen MS, Üremiş N, Türköz Y. Preventive effects of systemic Pistacia eurycarpa Yalt. administration on alveolar bone loss and oxidative stress in rats with experimental periodontitis. J Appl Oral Sci 2024; 32:e20230344. [PMID: 38359268 PMCID: PMC10984577 DOI: 10.1590/1678-7757-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of systemic administration of P. eurycarpa Yalt. plant extract on alveolar bone loss and oxidative stress biomarkers in gingival tissue in a rat model of experimental periodontitis. METHODOLOGY 32 male Wistar albino rats, weighing 200-250 g, were divided into four groups (n=8): Healthy control (HC), Experimental periodontitis control (EPC), Experimental periodontitis 400 mg/kg (EP400), Experimental periodontitis 800 mg/kg (EP800). Experimental periodontitis was induced using the ligating method. Distilled water was administered to the HC and EPC groups and the plant extract was administered to the EP400 and EP800 groups by oral gavage at doses of 400 mg/kg and 800 mg/kg, respectively. The rats were sacrificed on the 15th day. The values of glutathione peroxidase GSH-Px, malondialdehyde (MDA), superoxide dismustase (SOD), interleukin-1β (IL-1β), interleukin-10 (IL-10), total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) in the gingival tissues were analyzed by ELISA tests. Alveolar bone loss was assessed using micro-CT images of the maxilla. RESULTS Although the IL-1β, TOS, OSI results of the healthy control group were lower than those of the other groups, the TAS values were higher (p<0.05). No significant difference was found in the biochemical parameters among the EPC, EP400, and EP800 groups (p>0.05). Alveolar bone loss was significantly reduced in the extract groups compared to the EPC group (p<0.001). CONCLUSION Within the limitations of this study, it was observed that the systemic P. eurycarpa extract application reduced alveolar bone loss in a rat model of experimental periodontitis. Further studies are needed to elucidate the beneficial effects of P. eurycarpa.
Collapse
Affiliation(s)
- Mustafa Atalay
- 75th Year Oral and Dental Health HospitalMinistry of HealthAnkaraTurkeyMinistry of Health, 75 Year Oral and Dental Health Hospital, Ankara, Turkey
| | - Mustafa Özay Uslu
- Alanya Alaaddin Keykubat UniversityFaculty of DentistryDepartment of PeriodontologyAntalyaTurkeyAlanya Alaaddin Keykubat University, Faculty of Dentistry, Department of Periodontology, Antalya, Turkey.
| | - Mehmet Sina İçen
- Inonu UniversityFaculty of PharmacyDepartment of PharmacognosyMalatyaTurkeyAssistant Prof. Dr. Mehmet Sina İçen, Inonu University, Faculty of Pharmacy, Department of Pharmacognosy, Malatya, Turkey.
| | - Nuray Üremiş
- Inonu UniversityFaculty of MedicineDepartment of Medical BiochemistryMalatyaTurkeyPh.D Nuray Üremiş, Inonu University, Faculty of Medicine, Department of Medical Biochemistry, Malatya, Turkey.
| | - Yusuf Türköz
- Inonu UniversityFaculty of MedicineDepartment of Medical BiochemistryMalatyaTurkeyProf. Dr. Yusuf Türköz, Inonu University, Faculty of Medicine, Department of Medical Biochemistry, Malatya, Turkey.
| |
Collapse
|
5
|
Dalir Abdolahinia E, Hajisadeghi S, Moayedi Banan Z, Dadgar E, Delaramifar A, Izadian S, Sharifi S, Maleki Dizaj S. Potential applications of medicinal herbs and phytochemicals in oral and dental health: Status quo and future perspectives. Oral Dis 2023; 29:2468-2482. [PMID: 35699367 DOI: 10.1111/odi.14276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Herbal therapies are utilized to treat a broad diversity of diseases all over the globe. Although no clinical studies have been conducted to demonstrate the antibacterial, antimicrobial, and antiplaque characteristics of these plants, this does not imply that they are ineffectual as periodontal treatments or anti-cariogenic drugs. However, there is a scarcity of research confirming their efficacy and worth. SUBJECT Herbs are utilized in dentistry as antimicrobial, antineoplastic, antiseptic, antioxidant, and analgesics agents as well as for the elimination of bad breath. In addition, the application of herbal agents in tissue engineering improved the regeneration of oral and dental tissues. This study reviews the application of medicinal herbs for the treatment of dental and oral diseases in different aspects. METHODS This article focuses on current developments in the use of medicinal herbs and phytochemicals in oral and dental health. An extensive literature review was conducted via an Internet database, mostly PubMed. The articles included full-text publications written in English without any restrictions on a date. CONCLUSION Plants have been suggested, as an alternate remedy for oral-dental problems, and this vocation needs long-term dependability. More research on herbal medicine potential as pharmaceutical sources and/or therapies is needed.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Hajisadeghi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Zahra Moayedi Banan
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeel Dadgar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Delaramifar
- School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Sepideh Izadian
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Liu K, Hong B, Wang S, Lou F, You Y, Hu R, Shafqat A, Fan H, Tong Y. Pharmacological Activity of Cepharanthine. Molecules 2023; 28:5019. [PMID: 37446681 DOI: 10.3390/molecules28135019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.
Collapse
Affiliation(s)
- Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yecheng You
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruolan Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
PLA Nanofibers for Microenvironmental-Responsive Quercetin Release in Local Periodontal Treatment. Molecules 2022; 27:molecules27072205. [PMID: 35408602 PMCID: PMC9000246 DOI: 10.3390/molecules27072205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.
Collapse
|
8
|
Bae JY, Lee DS, Cho YK, Lee JY, Park JH, Lee SH. Daphne jejudoensis Attenuates LPS-Induced Inflammation by Inhibiting TNF-α, IL-1β, IL-6, iNOS, and COX-2 Expression in Periodontal Ligament Cells. Pharmaceuticals (Basel) 2022; 15:ph15040387. [PMID: 35455384 PMCID: PMC9032301 DOI: 10.3390/ph15040387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is a common disease involving inflammation and tissue destruction in the periodontal region. Although uncontrolled long-term inflammation in the gingiva may lead to loss of the periodontal ligament, treatments or preventive solutions for periodontitis are scarce. The aim of this study is to find anti-inflammatory material from a natural source that can be used to treat or protect against periodontitis. Daphne species (Thymelaeaceae) are important and popular components of traditional Chinese medicine and are used as anti-inflammatory agents. Daphne jejudoensis is an endemic plant that grows on Jeju Island and was identified as a new species in 2013. In this study, for the first time, we investigated the anti-inflammatory effect of D. jejudoensis leaf extract (DJLE) on human periodontal ligament cells. The gene expression levels of pro-inflammatory cytokines (interleukin-1β and 6 and tumor necrosis factor-α) and inflammation-inducible enzymes (inducible nitric oxide synthase and cyclooxygenase-2) were reduced after DJLE treatment with/without lipopolysaccharide stimulation. The findings of this study indicate that D. jejudoensis possesses anti-inflammatory activities, suggesting that DJLE may be a potential preventive and therapeutic agent for periodontitis.
Collapse
Affiliation(s)
- Ji-Yeong Bae
- College of Pharmacy and Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju 38655, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea;
| | - Dong-Seol Lee
- R&D Center, Regenerative Dental Medicine Institute, HysensBio Co., Ltd., Gwacheon 13814, Korea; (D.-S.L.); (Y.K.C.); (J.-H.P.)
| | - You Kyoung Cho
- R&D Center, Regenerative Dental Medicine Institute, HysensBio Co., Ltd., Gwacheon 13814, Korea; (D.-S.L.); (Y.K.C.); (J.-H.P.)
| | - Ji-Yeon Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea;
| | - Joo-Hwang Park
- R&D Center, Regenerative Dental Medicine Institute, HysensBio Co., Ltd., Gwacheon 13814, Korea; (D.-S.L.); (Y.K.C.); (J.-H.P.)
| | - Sang Ho Lee
- College of Pharmacy and Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju 38655, Korea;
- Correspondence: ; Tel.: +82-64-754-2650
| |
Collapse
|
9
|
Anti-Periodontitis Effect of Ethanol Extracts of Alpinia Katsumadai Seeds. Nutrients 2021; 14:nu14010136. [PMID: 35011011 PMCID: PMC8747133 DOI: 10.3390/nu14010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
Oral microbes are intimately associated with many oral and systemic diseases. Ongoing research is seeking to elucidate drugs that prevent and treat microbial diseases. Various functions of Alpinia Katsumadai seed extracts have been reported such as their anti-viral, anti-oxidant, anti-inflammatory, anti-puritic, anti-emetic, and cytoprotective effects. Here, we investigated the anti-periodontitis effect of an ethanol extract of Alpinia Katsumadai seeds (EEAKSs) on dental plaque bacteria (DPB)-induced inflammation and bone resorption. DPB and Porphyromonas gingivalis (P. gingivalis) were cultured and lipopolysaccharide (LPS) was extracted. Prostaglandin E2 (PGE2) and cyclooxygenase 2 (COX-2) levels were estimated using ELISA. Cytotoxicity was also verified. Proteases were screened using a protease antibody array method. Osteoclastic bone resorption was also investigated. EEAKSs suppressed P. gingivalis growth on agar plates. LPS prepared from dental plaque bacteria (DPB-LPS) and P. gingivalis (PG-LPS) significantly increased PGE2 and COX2 levels in immortalized gingival fibroblasts (IGFs), immortalized human oral keratinocytes (IHOKs), and RAW264.7 macrophage cells. However, DPB-LPS and PG-LPS-induced PGE2 and COX-2 increases were effectively abolished by EEAKS treatment at non-cytotoxic concentrations. In the protease antibody array, matrix metalloproteinase (MMP)-2, MMP-3, MMP-7, kallikrein 10, cathepsin D, and cathepsin V levels were increased by PG-LPS stimulation. However, increases in protease levels except for cathepsin D were suppressed by EEAKS treatment. In addition, RANKL-induced osteoclast differentiation was significantly inhibited by EEAKS treatment, leading to reductions in resorption pit formation. These results suggest that EEAKSs exerted a beneficial oral health effect to help prevent DPB-mediated periodontal disease.
Collapse
|
10
|
Zheng W, Hao Y, Wang D, Huang H, Guo F, Sun Z, Shen P, Sui K, Yuan C, Zhou Q. Preparation of triamcinolone acetonide-loaded chitosan/fucoidan hydrogel and its potential application as an oral mucosa patch. Carbohydr Polym 2021; 272:118493. [PMID: 34420748 DOI: 10.1016/j.carbpol.2021.118493] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/01/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023]
Abstract
Oral inflammatory diseases (OIDs) are among the most common lesions in the oral cavity, affecting the quality of human life and even causing oral cancer. However, most of the current oral mucosa patches still have some limitations, particularly instant, poor mechanical strength and conformability, low adhesion to tissue, and foreign body sensation. Herein, triamcinolone acetonide (TA)-loaded chitosan/fucoidan (CF) composite hydrogels were prepared via chemical crosslinking. The macro/microscopic morphologies and (bio)physicochemical properties of composite hydrogels were investigated. Incorporating fucoidan in chitosan hydrogels greatly enhanced their swelling behavior, mechanical strength, and adhesion properties. Further, the addition of TA in CF hydrogels improved their elastic feature, inhibited inflammatory response, and promoted the formation of mature and well-organized collagen fibers. The developed composite hydrogels displayed not only good antibacterial properties but also good cytocompatibility and histocompatibility. Thus, the designed hydrogels allow the development of oral mucosa patches as a potential treatment for OIDs.
Collapse
Affiliation(s)
- Weiping Zheng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yuanping Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Hailin Huang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Fangze Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Peili Shen
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
11
|
Chanaj-Kaczmarek J, Osmałek T, Szymańska E, Winnicka K, Karpiński TM, Dyba M, Bekalarska-Dębek M, Cielecka-Piontek J. Development and Evaluation of Thermosensitive Hydrogels with Binary Mixture of Scutellariae baicalensis radix Extract and Chitosan for Periodontal Diseases Treatment. Int J Mol Sci 2021; 22:11319. [PMID: 34768748 PMCID: PMC8583119 DOI: 10.3390/ijms222111319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023] Open
Abstract
Scutellaria baicalensis root displays anti-inflammatory and antibacterial properties due to the presence of flavonoids, particularly baicalin, baicalein, and wogonin. Our work aimed at developing thermosensitive hydrogels containing a binary mixture of S. baicalensis radix lyophilized extract and chitosan as a novel approach for periodontal diseases treatment. Two types of chitosan were employed in preliminary studies on binary mixtures with S. baicalensis radix lyophilized extract standardized for baicalin, baicalein, and wogonin. Thermosensitive hydrogels were prepared of poloxamer 407, alginate sodium, and cellulose derivatives and evaluated in terms of rheological and mucoadhesive behavior. The presence of chitosan altered the release profile of active compounds but did not affect their in vitro permeation behavior in PAMPA assay. The synergistic effects of S. baicalensis radix lyophilized extract and chitosan toward ferrous ion-chelating activity, inhibition of hyaluronidase, and pathogen growth were observed. The thermosensitive gelling system showed shear-thinning properties, gelation temperature between 25 and 27 °C, and favorable mucoadhesiveness in contact with porcine buccal mucosa, which was enhanced in the presence of binary mixture of S. baicalensis radix extract and chitosan. The release tests showed that baicalin and baicalein were liberated in a prolonged manner with a fast onset from hydrogel formulations.
Collapse
Affiliation(s)
- Justyna Chanaj-Kaczmarek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 61-781 Poznan, Poland;
| | - Tomasz Osmałek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland;
| | - Emilia Szymańska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Bialystok, 2c Mickiewicza Street, 15-222 Białystok, Poland; (E.S.); (K.W.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Bialystok, 2c Mickiewicza Street, 15-222 Białystok, Poland; (E.S.); (K.W.)
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Medical Faculty, Poznan University of Medical Sciences, 3 Wieniawskiego Street, 61-712 Poznan, Poland;
| | - Magdalena Dyba
- Department of Prosthodontics and Dental Technology, Faculty of Dentistry, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland;
| | - Marta Bekalarska-Dębek
- Department of Conservative Dentistry and Periodontology, Faculty of Dentistry, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 61-781 Poznan, Poland;
| |
Collapse
|
12
|
Anti-Inflammatory Effects of Fermented Lotus Root and Linoleic Acid in Lipopolysaccharide-Induced RAW 264.7 Cells. Life (Basel) 2020; 10:life10110293. [PMID: 33228085 PMCID: PMC7699317 DOI: 10.3390/life10110293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a protective response of the innate immune system. However, aberrant inflammatory responses lead to various diseases. Lotus root, the edible rhizome of Nelumbo nucifera, is a popular traditional herbal medicine in East Asia. In a previous study, we reported that fermented lotus root (FLR) alleviated ethanol/HCl-induced gastric ulcers in rats by modulating inflammation-related genes. However, the mechanisms underlying the anti-inflammatory effects of FLR and its major constituent, linoleic acid (LA), are still largely unknown. In this study, we investigated the anti-inflammatory effects of FLR and LA on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 murine macrophages. We found that FLR inhibited LPS-induced expression of inflammatory mediators through down-regulation of NF-κB activity. Similarly, LA also attenuated LPS-induced inflammatory responses and reduced LPS-induced phosphorylation of proteins associated with NF-κB signaling, such as ERK, JNK, and p38. Overall, our results suggested that FLR and LA may effectively ameliorate inflammatory diseases.
Collapse
|
13
|
Li C, Hu W, Wang J, Song X, Xiong X, Liu Z. A highly specific probe for the imaging of inflammation-induced endogenous nitric oxide produced during the stroke process. Analyst 2020; 145:6125-6129. [PMID: 32851996 DOI: 10.1039/d0an00824a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a turn-on two-photon fluorescent probe (Lyso-TP-NO) for nitric oxide (NO) was developed. It was synthesized using 4-ethylamino-1,8-naphthalimide as the two-photon fluorophore and N-methylaniline moiety as the reaction site. The probe and fluorophore were tested under one- and two-photon modes. The fluorescence intensity of the system was enhanced 23.1-fold after reacting with NO in the one-photon mode. However, the maximal two-photon action cross-section value of 200 GM was obtained under excitation at 840 nm. The probe exhibits high selectivity and sensitivity over other reactive oxygen species (ROS) and reactive nitrogen species (RNS), with a detection limit as low as 3.3 nM. The two-photon fluorescence imaging of living cells and mouse brain tissues can capture inflammation-induced endogenous NO production in lysosomes during stroke occurrence.
Collapse
Affiliation(s)
- Chenchen Li
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.
| | | | | | | | | | | |
Collapse
|
14
|
Nunes CDR, Barreto Arantes M, Menezes de Faria Pereira S, Leandro da Cruz L, de Souza Passos M, Pereira de Moraes L, Vieira IJC, Barros de Oliveira D. Plants as Sources of Anti-Inflammatory Agents. Molecules 2020; 25:E3726. [PMID: 32824133 PMCID: PMC7465135 DOI: 10.3390/molecules25163726] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Plants represent the main source of molecules for the development of new drugs, which intensifies the interest of transnational industries in searching for substances obtained from plant sources, especially since the vast majority of species have not yet been studied chemically or biologically, particularly concerning anti-inflammatory action. Anti-inflammatory drugs can interfere in the pathophysiological process of inflammation, to minimize tissue damage and provide greater comfort to the patient. Therefore, it is important to note that due to the existence of a large number of species available for research, the successful development of new naturally occurring anti-inflammatory drugs depends mainly on a multidisciplinary effort to find new molecules. Although many review articles have been published in this regard, the majority presented the subject from a limited regional perspective. Thus, the current article presents highlights from the published literature on plants as sources of anti-inflammatory agents.
Collapse
Affiliation(s)
- Clara dos Reis Nunes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Mariana Barreto Arantes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Silvia Menezes de Faria Pereira
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Larissa Leandro da Cruz
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Michel de Souza Passos
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, UniversidadeEstadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (M.d.S.P.); (I.J.C.V.)
| | - Luana Pereira de Moraes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Ivo José Curcino Vieira
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, UniversidadeEstadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (M.d.S.P.); (I.J.C.V.)
| | - Daniela Barros de Oliveira
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| |
Collapse
|
15
|
Cafferata EA, Castro-Saavedra S, Fuentes-Barros G, Melgar-Rodríguez S, Rivera F, Carvajal P, Hernández M, Cortés BI, Cortez C, Cassels BK, Vernal R. Boldine inhibits the alveolar bone resorption during ligature-induced periodontitis by modulating the Th17/Treg imbalance. J Periodontol 2020; 92:123-136. [PMID: 32490537 DOI: 10.1002/jper.20-0055] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND During periodontitis, tooth-supporting alveolar bone is resorbed when there is an increased expression of the pro-osteolytic factor termed receptor activator of nuclear factor κB ligand (RANKL), which is responsible for osteoclast differentiation and activation. In periodontitis-affected tissues, the imbalance between T-helper type-17 (Th17) and T-regulatory (Treg) lymphocyte activity favors this RANKL overexpression. In this context, immunotherapeutic strategies aimed at modulating this Th17/Treg imbalance could eventually arrest the RANKL-mediated alveolar bone loss. Boldine has been reported to protect from pathological bone loss during rheumatoid arthritis and osteoporosis, whose pathogenesis is associated with a Th17/Treg imbalance. However, the effect of boldine on alveolar bone resorption during periodontitis has not been elucidated yet. This study aimed to determine whether boldine inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis. METHODS Mice with ligature-induced periodontitis were orally treated with boldine (10/20/40 mg/kg) for 15 consecutive days. Non-treated periodontitis-affected mice and non-ligated mice were used as controls. Alveolar bone loss was analyzed by micro-computed tomography and scanning electron microscopy. Osteoclasts were quantified by histological identification of tartrate-resistant acid phosphatase-positive cells. Production of RANKL and its competitive antagonist osteoprotegerin (OPG) were analyzed by ELISA, quantitative polymerase chain reaction (qPCR), and immunohistochemistry. The Th17 and Treg responses were analyzed by quantifying the T-cell frequency and number by flow cytometry. Also, the expression of their signature transcription factors and cytokines were quantified by qPCR. RESULTS Boldine inhibited the alveolar bone resorption. Consistently, boldine caused a decrease in the osteoclast number and RANKL/OPG ratio in periodontal lesions. Besides, boldine reduced the Th17-lymphocyte detection and response and increased the Treg-lymphocyte detection and response in periodontitis-affected tissues. CONCLUSION Boldine, administered orally, inhibited the alveolar bone resorption and modulated the Th17/Treg imbalance during experimental periodontitis.
Collapse
Affiliation(s)
- Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Peru
| | - Sebastián Castro-Saavedra
- Chemobiodynamics Laboratory, Department of Chemistry, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Felipe Rivera
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Paola Carvajal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Cristian Cortez
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Bruce K Cassels
- Chemobiodynamics Laboratory, Department of Chemistry, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Jeong-Hyon K, Bon-Hyuk G, Sang-Soo N, Yeon-Cheol P. A review of rat models of periodontitis treated with natural extracts. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
17
|
The preventive and therapeutic application of garlic and other plant ingredients in the treatment of periodontal diseases. Exp Ther Med 2020; 19:1507-1510. [PMID: 32010331 PMCID: PMC6966117 DOI: 10.3892/etm.2019.8382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Since ancient times, pharmacologically active ingredients derived from natural sources, including plants and microbials have been used in the treatment of a wide array of diseases, such as atherosclerosis, diabetes mellitus and cancers. Herbal extracts and polyphenols are produced from herbs that contain a variety of ingredients, most of which exhibit anti-inflammatory, anti-oxidative and anti-microbial actions. Gingivitis is triggered by the infection of the periodontal tissues with periodontal disease-causing pathogens present in the dental biofilm. This is accompanied by weak inflammatory immune reactions in the gingiva. In periodontitis, prolonged and excessive inflammation results in the destruction of gingival connective tissue and in the resorption of alveolar bone, leading to tooth loss. There are a number of clinical reports showing the effectiveness of both herbal extracts and polyphenols on periodontal diseases when applied as a mouthwash or dentifrice into the oral cavity. However, to date, at least to the best of our knowledge, there is no clinical report available on the therapeutic effects of garlic or its extract on periodontal diseases, apart from a recent study, which reported that the intake of aged garlic extract (AGE) containing various pharmacologically active sulfur compounds, alleviated the symptoms of gingivitis clinically. The finding suggests that AGE may be a promising candidate for use in the treatment of periodontal diseases, although additional clinical trials are warranted to confirm this. In addition, further studies are required for the clarification of the basic molecular mechanisms through which AGE attenuates gingivitis. In this review, we summarize the beneficial effects of several natural compounds on periodontal disease and describe the possible applications of garlic ingredients in detail.
Collapse
|
18
|
Ara T, Koide M, Kitamura H, Sogawa N. Effects of shokyo ( Zingiberis Rhizoma) and kankyo ( Zingiberis Processum Rhizoma) on prostaglandin E 2 production in lipopolysaccharide-treated mouse macrophage RAW264.7 cells. PeerJ 2019; 7:e7725. [PMID: 31576251 PMCID: PMC6753926 DOI: 10.7717/peerj.7725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/22/2019] [Indexed: 11/27/2022] Open
Abstract
We previously reported that shokyo and kankyo, which are water-extracted fractions of ginger, reduced LPS-induced PGE2 production in human gingival fibroblasts. In this study, we examined the effects of these herbs on LPS-treated mouse macrophage RAW264.7 cells. Both shokyo and kankyo reduced LPS-induced PGE2 production in a concentration-dependent manner. Shokyo and kankyo did not inhibit cyclooxygenase (COX) activity, nor did they alter the expression of molecules in the arachidonic acid cascade. In addition, these herbs did not alter NF-κB p65 translocation into nucleus, or phosphorylation of p65 or ERK. These results suggest that shokyo and kankyo inhibit cPLA2 activity. Although 6-shogaol produced similar results to those of shokyo and kankyo, the concentration of 6-shogaol required for the reduction of PGE2 production were higher than those of 6-shogaol in shokyo and kankyo. Therefore, several gingerols and shogaols other than 6-shogaol may play a role in the reduction of LPS-induced PGE2 production. Thus, 6-shogaol, and other gingerols and shogaols inhibit cPLA2 activity and reduce LPS-induced PGE2 production via a different mechanism from traditional anti-inflammatory drugs. Moreover, kampo medicines that contain shokyo or kankyo are considered to be effective for inflammatory diseases.
Collapse
Affiliation(s)
- Toshiaki Ara
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | | | - Norio Sogawa
- Department of Pharmacology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| |
Collapse
|
19
|
Jalaluddin M, Jayanti I, Gowdar IM, Roshan R, Varkey RR, Thirutheri A. Antimicrobial Activity of Curcuma longa L. Extract on Periodontal Pathogens. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2019; 11:S203-S207. [PMID: 31198338 PMCID: PMC6555360 DOI: 10.4103/jpbs.jpbs_295_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM The aim of this study was to evaluate the antimicrobial activity of Curcuma longa L. extract (CLE) on periodontal pathogens. MATERIALS AND METHODS Sixty patients were divided into three groups: Group I (n = 20) patients treated with scaling and root planning (SRP) only, Group II (n = 20) patients treated with SRP followed by subgingival irrigation with 1% CLE solution, and Group III (n = 20) patients treated with SRP followed by subgingival irrigation with 0.2% chlorhexidine (CHX) solution. The clinical parameters (plaque index [PI], gingival index [GI] scores, probing pocket depths) were recorded at baseline, 4 weeks, and 8 weeks. The antimicrobial efficacy of 1% CLE and 0.2% CHX solutions against Porphyromonas gingivalis, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans were evaluated by disk diffusion method. RESULTS There was no significant difference in the mean values of zone of inhibition exhibited by both CLE and CHX solutions. All the groups showed significant improvement in the clinical parameters when compared to baseline values. The improvement in the PI and GI scores in the CLE group was lesser than that in CHX group by the end of the study period. CONCLUSION CLE possess antimicrobial efficacy against the common periodontopathic bacteria. However, further large-scale studies evaluating the substantivity of C. longa are required to support its beneficial use in the treatment of periodontal diseases.
Collapse
Affiliation(s)
- Mohammad Jalaluddin
- Department of Periodontics and Oral Implantology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Ipsita Jayanti
- Department of Periodontics and Oral Implantology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Inderjit Murugendrappa Gowdar
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Rincy Roshan
- Department of Periodontics, Al-Azhar Dental College, Thodupuzha, Kerala, India
| | - Roshan Rajan Varkey
- Department of Periodontics, Al-Azhar Dental College, Thodupuzha, Kerala, India
| | - Abhilash Thirutheri
- Department of Oral and Maxillofacial surgery, Sree Anjaneya Institute of Dental Sciences, Calicut, Kerala, India
| |
Collapse
|
20
|
Sakagami H. Introduction to the Special Issue "Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions". MEDICINES 2019; 6:medicines6020052. [PMID: 31035315 PMCID: PMC6630427 DOI: 10.3390/medicines6020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
This editorial is a brief introduction to the Special Issue of “Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions”. From the natural resources and chemical modifications of the backbone structures of natural products, various attractive substances with new biological functions were excavated. Best fit combination of these materials may contribute in the treatment of oral diseases.
Collapse
Affiliation(s)
- Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| |
Collapse
|