1
|
Geronikaki A. Special Issue: "Enzymes and Enzyme Inhibitors-Applications in Medicine and Diagnosis 2.0". Int J Mol Sci 2024; 25:13422. [PMID: 39769186 PMCID: PMC11678085 DOI: 10.3390/ijms252413422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The first paper in this Special Issue explores the synthesis, characterization, biological, and catalytic activities of new gold(I) and silver(I) complexes that are stabilized by caffeine derivatives and used as NHC ligands [...].
Collapse
Affiliation(s)
- Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Li Q, Dai Y, Xu X, Wu W, Chen W, Wang H, Tan CH, Ye X. Enantioselective Reduction and Sulfenylation of Isoflavanone Derivatives via Bisguanidinium Hypervalent Silicate. Org Lett 2024; 26:6241-6246. [PMID: 38996353 DOI: 10.1021/acs.orglett.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
In this work, we describe an enantioselective reduction and sulfenylation of isoflavanone derivatives by an ion pair strategy. The chiral cationic catalyst bisguanidinium (BG) is capable of chiral induction in catalytic systems. Silane hydride works as a reductant and helps to form an anionic hypervalent silicate complex and intermediates with substrates to pair with chiral catalyst. A series of umpolung sulfur reagents accomplish electrophilic attack in the presence of a silicate anion. Both chemoselectivity and enantioselectivity are good to excellent to afford a wide scope of 4-oxo-4H-chromene-3-carbonitrile and S-electrophilic reagents. Further transformations were completed to introduce more applications.
Collapse
Affiliation(s)
- Qiaoqiang Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Yuqing Dai
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Xinru Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Wentao Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Wenchao Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
3
|
Mizutani Y, Inoue Y, Goda Y, Mizutani S, Asanuma T, Miura N, Hidaka Y, Sato R, Satoh H. Successful Treatment of Central Nervous System Lymphoma with Combination Therapy of Nimustine and Prednisolone in Two Dogs. Vet Sci 2023; 10:533. [PMID: 37756055 PMCID: PMC10538104 DOI: 10.3390/vetsci10090533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
Of intracranial tumors, primary central nervous system lymphoma (PCNSL) is rare in dogs. Herein, we describe our experience with two dogs (a 3-year-old intact female toy poodle and a 5-year-old spayed female toy poodle) that developed neurological symptoms. Magnetic resonance imaging (MRI) revealed intracranial disseminated lesions. Cerebrospinal fluid (CSF) examination revealed pleocytosis and B-cell monoclonal proliferation in both cases. PCNSL or secondary central nervous system lymphoma (SCNSL) was diagnosed on the basis of MRI findings and CSF examinations. Nimustine (ACNU) is a nitrosourea alkylating agent, a class of drugs that includes lomustine. Nimustine is mainly used to treat human intracranial neoplasia because of its high permeability across the blood-brain barrier. The dogs in this study were treated with combined chemotherapy comprising nimustine and prednisolone, which achieved complete or nearly complete remission of neurological symptoms and long-term survival (>2583 days and 1218 days), but with problematic adverse effects. We determined that the dose of nimustine for canine PCNSL or SCNSL with intravenous infusion was 25-30 mg/m2 every 3-4 weeks for a total of four times; however, the data were insufficient to determine the optimal regimen.
Collapse
Affiliation(s)
- Yuko Mizutani
- Faculty of Agriculture, Veterinary Teaching Hospital, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
| | - Yoshiyuki Inoue
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
| | - Yoshimichi Goda
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
| | - Shinya Mizutani
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari 794-8555, Ehime, Japan
| | - Taketoshi Asanuma
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari 794-8555, Ehime, Japan
| | - Naoki Miura
- Joint Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Kagoshima, Japan
| | - Yuichi Hidaka
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
| | - Reiichiro Sato
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
| | - Hiroyuki Satoh
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki-shi 889-2192, Miyazaki, Japan
| |
Collapse
|
4
|
Abe T, Sakagami H, Amano S, Uota S, Bandow K, Uesawa Y, U S, Shibata H, Takemura Y, Kimura Y, Takao K, Sugita Y, Sato A, Tanuma SI, Takeshima H. A Comparative Study of Tumor-Specificity and Neurotoxicity between 3-Styrylchromones and Anti-Cancer Drugs. MEDICINES (BASEL, SWITZERLAND) 2023; 10:43. [PMID: 37505064 PMCID: PMC10386476 DOI: 10.3390/medicines10070043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Background. Many anti-cancer drugs used in clinical practice cause adverse events such as oral mucositis, neurotoxicity, and extravascular leakage. We have reported that two 3-styrylchromone derivatives, 7-methoxy-3-[(1E)-2-phenylethenyl]-4H-1-benzopyran-4-one (Compound A) and 3-[(1E)-2-(4-hydroxyphenyl)ethenyl]-7-methoxy-4H-1-benzopyran-4-one (Compound B), showed the highest tumor-specificity against human oral squamous cell carcinoma (OSCC) cell lines among 291 related compounds. After confirming their superiority by comparing their tumor specificity with newly synthesized 65 derivatives, we investigated the neurotoxicity of these compounds in comparison with four popular anti-cancer drugs. Methods: Tumor-specificity (TSM, TSE, TSN) was evaluated as the ratio of mean CC50 for human normal oral mesenchymal (gingival fibroblast, pulp cell), oral epithelial cells (gingival epithelial progenitor), and neuronal cells (PC-12, SH-SY5Y, LY-PPB6, differentiated PC-12) to OSCC cells (Ca9-22, HSC-2), respectively. Results: Compounds A and B showed one order of magnitude higher TSM than newly synthesized derivatives, confirming its prominent tumor-specificity. Docetaxel showed one order of magnitude higher TSM, but two orders of magnitude lower TSE than Compounds A and B. Compounds A and B showed higher TSM, TSE, and TSN values than doxorubicin, 5-FU, and cisplatin, damaging OSCC cells at concentrations that do not affect the viability of normal epithelial and neuronal cells. QSAR prediction based on the Tox21 database suggested that Compounds A and B may inhibit the signaling pathway of estrogen-related receptors.
Collapse
Affiliation(s)
- Tomoyuki Abe
- Division of Geriatric Dentistry, Meikai University School of Dentistry, Saitama 350-0283, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Saitama 350-0283, Japan
| | - Shigeru Amano
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Saitama 350-0283, Japan
| | - Shin Uota
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Saitama 350-0283, Japan
| | - Kenjiro Bandow
- Division of Biochemistry, Meikai University School of Dentistry, Saitama 350-0283, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-858, Japan
| | - Shiori U
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Hiroki Shibata
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yuri Takemura
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yu Kimura
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Akira Sato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Sei-Ichi Tanuma
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Saitama 350-0283, Japan
| | - Hiroshi Takeshima
- Division of Geriatric Dentistry, Meikai University School of Dentistry, Saitama 350-0283, Japan
| |
Collapse
|
5
|
Chhikara A, Roayapalley PK, Sakagami H, Amano S, Satoh K, Uesawa Y, Das U, Das S, Borrego EA, Guerena CD, Hernandez CR, Aguilera RJ, Dimmock JR. Novel Unsymmetric 3,5-Bis(benzylidene)-4-piperidones That Display Tumor-Selective Toxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196718. [PMID: 36235258 PMCID: PMC9572513 DOI: 10.3390/molecules27196718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
Two series of novel unsymmetrical 3,5-bis(benzylidene)-4 piperidones 2a-f and 3a-e were designed as candidate antineoplastic agents. These compounds display potent cytotoxicity towards two colon cancers, as well as several oral squamous cell carcinomas. These compounds are less toxic to various non-malignant cells giving rise to large selectivity index (SI) figures. Many of the compounds are also cytotoxic towards CEM lymphoma and HL-60 leukemia cells. Representative compounds induced apoptotic cell death characterized by caspase-3 activation and subG1 accumulation in some OSCC cells, as well as the depolarization of the mitochondrial membrane potential in CEM cells. A further line of inquiry was directed to finding if the SI values are correlated with the atomic charges on the olefinic carbon atoms. The potential of these compounds as antineoplastic agents was enhanced by an ADME (absorption, distribution, metabolism, and excretion) evaluation of five lead molecules, which revealed no violations.
Collapse
Affiliation(s)
- Aruna Chhikara
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi 110003, India
| | - Praveen K. Roayapalley
- Drug Discovery and Development Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Shigeru Amano
- School of Dentistry, Meikai University, Sakado 350-0283, Japan
| | - Keitaro Satoh
- School of Dentistry, Meikai University, Sakado 350-0283, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Umashankar Das
- Drug Discovery and Development Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Swagatika Das
- Drug Discovery and Development Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Edgar A. Borrego
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Cristina D. Guerena
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Clare R. Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Renato J. Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Jonathan R. Dimmock
- Drug Discovery and Development Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
6
|
Enantioselective Michael/Hemiketalization Cascade Reactions between Hydroxymaleimides and 2-Hydroxynitrostyrenes for the Construction of Chiral Chroman-Fused Pyrrolidinediones. Molecules 2022; 27:molecules27165081. [PMID: 36014320 PMCID: PMC9414856 DOI: 10.3390/molecules27165081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/16/2023] Open
Abstract
In this paper, the organocatalytic asymmetric Michael addition/hemiketalization cascade reactions between hydroxymaleimides and 2-hydroxynitrostyrenes were developed, which provided a new protocol for building a chiral ring-fused chroman skeleton. This squaramide-catalyzed cascade reaction provided chiral chroman-fused pyrrolidinediones with three contiguous stereocenters in good to high yields (up to 88%), with excellent diastereoselectivities (up to >20:1 dr) and enantioselectivities (up to 96% ee) at −16 °C. Moreover, a scale-up synthesis was also carried out, and a possible reaction mechanism was proposed.
Collapse
|
7
|
Benzothiazole and Chromone Derivatives as Potential ATR Kinase Inhibitors and Anticancer Agents. Molecules 2022; 27:molecules27144637. [PMID: 35889508 PMCID: PMC9324009 DOI: 10.3390/molecules27144637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Despite extensive studies and the great variety of existing anticancer agents, cancer treatment remains an aggravating and challenging problem. Therefore, the development of novel anticancer drugs with a better therapeutic profile and fewer side effects to combat this persistent disease is still necessary. In this study, we report a novel series of benzothiazole and chromone derivatives that were synthesized and evaluated for their anticancer activity as an inhibitor of ATR kinase, a master regulator of the DDR pathway. The cell viability of a set of 25 compounds was performed using MTT assay in HCT116 and HeLa cell lines, involving 72 h incubation of the compounds at a final concentration of 10 µM. Cells incubated with compounds 2c, 7h and 7l were found to show viability ≤50%, and were taken forward for dose–response studies. Among the tested compounds, three of them (2c, 7h and 7l) showed higher potency, with compound 7l exhibiting the best IC50 values in both the cell lines. Compounds 2c and 7l were found to be equally cytotoxic towards both the cell lines, namely, HCT116 and HeLa, while compound 7h showed better cytotoxicity towards HeLa cell line. For these three compounds, an immunoblot assay was carried out in order to analyze the inhibition of phosphorylation of Chk1 at Ser 317 in HeLa and HCT116 cells. Compound 7h showed inhibition of pChk1 at Ser 317 in HeLa cells at a concentration of 3.995 µM. Further analysis for Chk1 and pChk1 expression was carried out in Hela cells by treatment against all the three compounds at a range of concentrations of 2, 5 and 10 µM, wherein compound 7h showed Chk1 inhibition at 2 and 5 µM, while pChk1 expression was observed for compound 7l at a concentration of 5 µM. To support the results, the binding interactions of the compounds with the ATR kinase domain was studied through molecular docking, wherein compounds 2c, 7h and 7l showed binding interactions similar to those of Torin2, a known mTOR/ATR inhibitor. Further studies on this set of molecules is in progress for their specificity towards the ATR pathway.
Collapse
|
8
|
Shabir G, Shafique I, Saeed A. Ultrasound Assisted Synthesis of 5‐7 Membered Heterocyclic Rings in Organic Molecules. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry Quaid‐I‐Azam University Islamabad Pakistan
- College of Arts and Science University of Chakwal Punjab Pakistan
| | - Imran Shafique
- Department of Chemistry Quaid‐I‐Azam University Islamabad Pakistan
| | - Aamer Saeed
- Department of Chemistry Quaid‐I‐Azam University Islamabad Pakistan
| |
Collapse
|
9
|
Synthesis of 4-oxo-6-styryl-4H-pyran-2-carbonitriles and their application for the construction of new 4-pyrone derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Naitoh K, Orihara Y, Sakagami H, Miura T, Satoh K, Amano S, Bandow K, Iijima Y, Kurosaki K, Uesawa Y, Hashimoto M, Wakabayashi H. Tumor-Specificity, Neurotoxicity, and Possible Involvement of the Nuclear Receptor Response Pathway of 4,6,8-Trimethyl Azulene Amide Derivatives. Int J Mol Sci 2022; 23:ijms23052601. [PMID: 35269748 PMCID: PMC8910578 DOI: 10.3390/ijms23052601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Very few papers covering the anticancer activity of azulenes have been reported, as compared with those of antibacterial and anti-inflammatory activity. This led us to investigate the antitumor potential of fifteen 4,6,8-trimethyl azulene amide derivatives against oral malignant cells. Methods: 4,6,8-Trimethyl azulene amide derivatives were newly synthesized. Anticancer activity was evaluated by tumor-specificity against four human oral squamous cell carcinoma (OSCC) cell lines over three normal oral cells. Neurotoxicity was evaluated by cytotoxicity against three neuronal cell lines over normal oral cells. Apoptosis induction was evaluated by Western blot and cell cycle analyses. Results: Among fifteen derivatives, compounds 7, 9, and 15 showed the highest anticancer activity, and relatively lower neurotoxicity than doxorubicin, 5-fluorouracil (5-FU), and melphalan. They induced the accumulation of a comparable amount of a subG1 population, but slightly lower extent of caspase activation, as compared with actinomycin D, used as an apoptosis inducer. The quantitative structure–activity relationship analysis suggests the significant correlation of tumor-specificity with a 3D shape of molecules, and possible involvement of inflammation and hormone receptor response pathways. Conclusions: Compounds 7 and 15 can be potential candidates of a lead compound for developing novel anticancer drugs.
Collapse
Affiliation(s)
- Kotone Naitoh
- Faculty of Science, Josai University, Saitama 250-0295, Japan; (K.N.); (Y.O.); (T.M.); (M.H.); (H.W.)
| | - Yuta Orihara
- Faculty of Science, Josai University, Saitama 250-0295, Japan; (K.N.); (Y.O.); (T.M.); (M.H.); (H.W.)
| | - Hiroshi Sakagami
- Research Institute of Odontology, Meikai University, Sakado, Saitama 350-0283, Japan;
- Correspondence: (H.S.); (Y.U.)
| | - Takumi Miura
- Faculty of Science, Josai University, Saitama 250-0295, Japan; (K.N.); (Y.O.); (T.M.); (M.H.); (H.W.)
| | - Keitaro Satoh
- Division of Pharmacology, Department of Diagnostics and Therapeutics Sciences, Meikai University School of Dentistry, Saitama 350-0283, Japan;
| | - Shigeru Amano
- Research Institute of Odontology, Meikai University, Sakado, Saitama 350-0283, Japan;
| | - Kenjiro Bandow
- Division of Biochemistry, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Saitama 350-0283, Japan;
| | - Yosuke Iijima
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama Medical University, Saitama 350-0283, Japan;
| | - Kota Kurosaki
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan;
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan;
- Correspondence: (H.S.); (Y.U.)
| | - Masashi Hashimoto
- Faculty of Science, Josai University, Saitama 250-0295, Japan; (K.N.); (Y.O.); (T.M.); (M.H.); (H.W.)
| | - Hidetsugu Wakabayashi
- Faculty of Science, Josai University, Saitama 250-0295, Japan; (K.N.); (Y.O.); (T.M.); (M.H.); (H.W.)
| |
Collapse
|
11
|
Roayapalley PK, Sakagami H, Satoh K, Amano S, Bandow K, Aguilera RJ, Hernandez KGC, Schiaffino Bustamante AY, Dimmock SG, Sharma RK, Das U, Dimmock JR. Cytotoxic Tumour-Selective 1,5-Diaryl-3-Oxo-1,4-Pentadienes Mounted on a Piperidine Ring. MEDICINES 2021; 8:medicines8120078. [PMID: 34940290 PMCID: PMC8707244 DOI: 10.3390/medicines8120078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
A series of 3,5-bis(benzylidene)-4-piperidones 2a–u were prepared as candidate cytotoxic agents. In general, the compounds are highly toxic to human gingival carcinoma (Ca9-22), human squamous carcinoma-2 (HSC-2) and human squamous carcinoma-4 (HSC-4) neoplasms, but less so towards non-malignant human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF) and human pulp cells (HPC), thereby demonstrating tumour-selective toxicity. A further study revealed that most of the compounds in series 2 were more toxic to the human Colo-205 adenocarcinoma cell line (Colo-205), human HT29 colorectal adenocarcinoma cells (HT-29) and human CEM lymphoid cells (CEM) neoplasms than towards non-malignant human foreskin Hs27 fibroblast line (Hs27) cells. The potency of the cytotoxins towards the six malignant cell lines increased as the sigma and sigma star values of the aryl substituents rose. Attempts to condense various aryl aldehydes with 2,2,6,6-tetramethyl-4-piperidone led to the isolation of some 1,5-diaryl-1,4-pentadien-3-ones. The highest specificity for oral cancer cells was displayed by 2e and 2r. In the case of 2r, its selective toxicity exceeded that of doxorubicin and melphalan. The enones 2k, m, o have the highest SI values towards colon cancer and leukemic cells. Both 2e,r inhibited mitosis and increased the subG1 population (with a transient increase in G2/M phase cells). Slight activation of caspase-3, based on the cleavage of poly(ADP-ribose)polymerase (PARP) and procaspase 3, was detected.
Collapse
Affiliation(s)
- Praveen K. Roayapalley
- Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
- Correspondence:
| | - Hiroshi Sakagami
- School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.); (K.S.); (S.A.); (K.B.)
| | - Keitaro Satoh
- School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.); (K.S.); (S.A.); (K.B.)
| | - Shigeru Amano
- School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.); (K.S.); (S.A.); (K.B.)
| | - Kenjiro Bandow
- School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.); (K.S.); (S.A.); (K.B.)
| | - Renato J. Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (R.J.A.); (K.G.C.H.); (A.Y.S.B.)
| | - Karla G. Cano Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (R.J.A.); (K.G.C.H.); (A.Y.S.B.)
| | - Austre Y. Schiaffino Bustamante
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (R.J.A.); (K.G.C.H.); (A.Y.S.B.)
| | - Stephen G. Dimmock
- Department of Finance, National University of Singapore, Singapore 119245, Singapore;
| | - Rajendra K. Sharma
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| | - Umashankar Das
- Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
| | - Jonathan R. Dimmock
- Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
| |
Collapse
|
12
|
Patil VM, Masand N, Verma S, Masand V. Chromones: Privileged scaffold in anticancer drug discovery. Chem Biol Drug Des 2021; 98:943-953. [PMID: 34519163 DOI: 10.1111/cbdd.13951] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
In the design and discovery of anticancer drugs, various natural heterocyclic scaffolds have attracted considerable interest as privileged structures. For rational drug design, some of the natural scaffolds such as chromones have exhibited wide acceptability due to their drug-like properties. Among the approved anticancer drugs, the scaffolds with high selectivity for a small group of closely related targets are of importance. In the development of selective anticancer agents, the natural, as well as synthetic, can generate highly selective compounds toward cancer targets. The present manuscript includes more particularly the development of cancer inhibitors incorporating the chromone scaffold, with a strong emphasis on their molecular interactions in the anticancer mechanism. It also includes the structure-activity relationship studies and related examples of lead optimization.
Collapse
Affiliation(s)
- Vaishali M Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| | - Saroj Verma
- Department of Pharmaceutical Chemistry, SGT University, Gurugram, Haryana, India
| | - Vijay Masand
- Department of Chemistry, Vidya Bharati College, Amravati, Maharashtra, India
| |
Collapse
|
13
|
Sakagami H, Furukawa T, Satoh K, Amano S, Iijima Y, Koshikawa T, Asai D, Fukuchi K, Takemura H, Kanamoto T, Yokose S. Re-Evaluation of Chemotherapeutic Potential of Pyoktanin Blue. MEDICINES (BASEL, SWITZERLAND) 2021; 8:medicines8070033. [PMID: 34206186 PMCID: PMC8305689 DOI: 10.3390/medicines8070033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Background: Pyoktanin blue (PB) is used for staining tissues and cells, and it is applied in photodynamic therapy due to its potent bactericidal activity. However, clinical application of PB as an antiviral and antitumor agent has been limited due to its potent toxicity. For clinical application, the antitumor and antiviral activity as well as the neurotoxicity of PB were re-evaluated with a chemotherapeutic index. Methods: Tumor-specificity (TS) was determined by the ratio of CC50 against normal oral cells/oral squamous cell carcinoma (OSCC); neurotoxicity by that of normal oral/neuronal cells; antiviral activity by that of mock-infected/virus-infected cells; and potency-selectivity expression (PSE) by dividing TS by CC50 (OSCC). Results: Antitumor activity of PB (assessed by TS and PSE) was comparable with that of DXR and much higher than that of 5-FU and melphalan. PB induced caspase-3 activation and subG1 cell accumulation in an OSCC cell line (Ca9-22). PB and anticancer drugs showed comparable cytotoxicity against both neuronal cells and OSCC cell lines. PB showed no detectable anti-HIV/HSV activity, in contrast to reverse transferase inhibitors, sulfated glucans, and alkaline extract of leaves of S.P. Conclusions: PB showed first-class anticancer activity and neurotoxicity, suggesting the importance of establishing the safe treatment schedule.
Collapse
Affiliation(s)
- Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Toshiko Furukawa
- Division of Endodontics and Operative Dentistry, School of Dentistry, Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (T.F.); (S.Y.)
| | - Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Shigeru Amano
- Research Institute of Odontology (M-RIO), Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Yosuke Iijima
- Department of Oral and Maxillofacial Surgery, Saitama Medical Center, Saitama 350-8550, Japan;
| | - Takuro Koshikawa
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan; (T.K.); (D.A.); (H.T.)
| | - Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan; (T.K.); (D.A.); (H.T.)
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan;
| | - Kunihiko Fukuchi
- Graduate School of Health Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan; (T.K.); (D.A.); (H.T.)
| | - Taisei Kanamoto
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan;
| | - Satoshi Yokose
- Division of Endodontics and Operative Dentistry, School of Dentistry, Meikai University, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan; (T.F.); (S.Y.)
| |
Collapse
|