1
|
Sadeghi MR. Ovarian Rejuvenation: Turning Dreams into Reality. J Reprod Infertil 2024; 25:1-2. [PMID: 39157283 PMCID: PMC11330206 DOI: 10.18502/jri.v25i1.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
The Article Abstract is not available.
Collapse
|
2
|
Sills ES, Tan SL. Population Dynamics, Plasma Cytokines and Platelet Centrifugation: Technical and Sociodemographic Aspects of 'Ovarian Rejuvenation'. Clin Pract 2023; 13:435-441. [PMID: 36961064 PMCID: PMC10037579 DOI: 10.3390/clinpract13020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
While advanced reproductive technologies have attained remarkable increases in sophistication, success, and availability since the 1980s, clinicians always meet a therapeutic impasse when the ovarian reserve reaches exhaustion. Irrespective of fertility aspirations, the decline in and eventual collapse of ovarian estrogen output means that menopause arrives with tremendous physiologic changes and reduced overall productivity. Because more women are gaining in longevity or delaying the age at pregnancy, the number of affected patients has never been larger. As concerns regarding standard hormone replacement therapy and the limitations of IVF are confronted, a workable path to enable primordial germ cell recruitment and de novo oocyte development would be welcome. Proof-of-concept case reports and clinical studies on autologous activated platelet-rich plasma (PRP) or its condensed cytokine derivatives suggest a way to facilitate these goals. However, ovarian PRP faces vexing challenges that place 'ovarian rejuvenation' under caution as it enters this therapeutic space. Here, we review key features of experimental human ovarian stem cell isolation/handling and reaffirm the need to harmonize laboratory protocols. Recognizing the regenerative science borrowed from other disciplines, specimen centrifugation, platelet processing, and condensed plasma cytokine enrichment are highlighted here. As the refinement of this rejuvenation approach would promise to reprogram adult ovarian physiology, the disruption of established treatment paradigms for infertility, menopause, and perhaps overall women's health seems likely. Emerging roles in reproductive biology and clinical practice are thus placed in a broader social and demographic context.
Collapse
Affiliation(s)
- E Scott Sills
- Plasma Research Section, FertiGen/CAG, Regenerative Biology Group, San Clemente, CA 92673, USA
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
| | - Seang Lin Tan
- OriginElle Fertility Clinic, Montréal, QC H4A 3J3, Canada
- Department of Obstetrics & Gynecology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Is autologous platelet activation the key step in ovarian therapy for fertility recovery and menopause reversal? Biomedicine (Taipei) 2023; 12:1-8. [PMID: 36816178 PMCID: PMC9910228 DOI: 10.37796/2211-8039.1380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Platelets are a uniquely mammalian physiologic feature. As the only non-marine vertebrates to experience menopause, humans have a substantial post-reproductive lifespan and are believed to have a limited, non-renewable oocyte supply. Ovarian reserve typically declines after about age 35yrs, marking losses which cannot be recovered by available fertility medications. When in vitro fertilization fails due to low or absent ovarian response, gonadotropin adjustments are often ineffectual and if additional oocytes are occasionally harvested, egg quality is usually poor. This problem was confronted by Greek researchers who developed a new surgical method to insert autologous platelet-rich plasma (PRP) into ovaries; the first ovarian PRP success to improve reproductive outcomes was published from Athens in 2016. This innovation influenced later research with condensed platelet-derived growth factors, leading to correction of oocyte ploidy error, normal blastocyst development, and additional term livebirths. Yet women's health was among the last clinical domains to explore PRP, and its role in 'ovarian rejuvenation' remains unsettled. One critical aspect in this procedure is platelet activation, a commonly overlooked step in the cytokine release cascade considered essential for successful transition of undifferentiated ovarian stem cells to an oocyte lineage. Poor activation of platelets thus becomes an unforced error, potentially diminishing or even negating post-treatment ovarian follicular response. To answer this query, relevant theory, current disagreements, and new data on platelet activation are presented, along with clinical challenges for regenerative fertility practice.
Collapse
|
4
|
Intraovarian condensed platelet cytokines for infertility and menopause-Mirage or miracle? Biochimie 2023; 204:41-47. [PMID: 36075561 DOI: 10.1016/j.biochi.2022.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
On a therapeutic landscape unchanged since the 1980's, oocyte donation with IVF still stands as the solitary medical answer to diminished reserve and premature ovarian insufficiency. In 2016, intraovarian platelet-rich plasma (PRP) crossed the horizon as a hopeful reply to these intertwined problems. The once remote mirage of platelet cytokine effects on gene regulation or telomere stabilization has been brought into sharper focus, with current work clarifying how PRP corrects oxidative stress, rectifies tissue hypoxia, downregulates apoptosis, and enhances cellular metabolism. Not yet ready for routine use, this innovative treatment has already offered at least one point of early consensus: How intraovarian PRP results should be classified-Patients are either responders or non-responders. From this it is intriguing that no published PRP protocol has ever reported a supranormal ovarian rebound or hyperstimulation effect. This might be explained by baseline age-related ovarian conditions prevalent among poor responders, but since dysregulated or malignant transformations are also missing in other tissue contexts following autologous PRP treatment, the contribution of some platelet product which intrinsically delimits regenerative action cannot be discounted. Here we summarize results with recent experimental and clinical platelet research, framing those most likely to help advance reproductive endocrinology practice.
Collapse
|
5
|
Kheil MH, Bahsoun R, Sharara FI. Platelet-rich plasma: inconclusive evidence of reproductive outcomes in menopausal women. J Assist Reprod Genet 2022; 39:1987-1991. [PMID: 35731320 PMCID: PMC9474992 DOI: 10.1007/s10815-022-02554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE The use of platelet-rich plasma is being investigated in reproductive medicine and clinically promoted as a fertility treatment for menopause. We aimed to review the literature on the impact of PRP on fertility in menopause. METHODS A literature search was performed using the PubMed and MEDLINE search engines. The search was limited to the English language. Articles studying PRP use in menopause were selected for the purpose of this review. RESULTS Limited case reports and case series studied fertility outcomes of PRP in menopause. Randomized controlled trials are lacking. Furthermore, no studies have been conducted to evaluate the effect of different PRP concentrations, injection techniques, or side effects on reproductive outcomes in menopausal women. CONCLUSION There is a dearth of data to support the routine implementation of intraovarian PRP injections for fertility restoration in menopausal women. Patients considering such therapy need to be well aware of the lack of adequate data for PRP use in menopause and should be counseled accordingly.
Collapse
Affiliation(s)
- Mira H Kheil
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Reem Bahsoun
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fady I Sharara
- Virginia Center for Reproductive Medicine, 11150 Sunset Hills Rd., Suite 100, Reston, VA, 20190, USA.
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC, USA.
| |
Collapse
|
6
|
Barad DH, Albertini DF, Molinari E, Gleicher N. Preliminary report of intraovarian injections of autologous platelet-rich plasma (PRP) in extremely poor prognosis patients with only oocyte donation as alternative: a prospective cohort study. Hum Reprod Open 2022; 2022:hoac027. [PMID: 35795849 PMCID: PMC9247703 DOI: 10.1093/hropen/hoac027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
STUDY QUESTION
Does intraovarian injection of platelet-rich plasma (PRP) change ovarian function in patients with extremely low functional ovarian reserve (LFOR) who, otherwise, would likely only have a chance of pregnancy through third-party oocyte donation?
SUMMARY ANSWER
No clinically significant effects of PRP treatment on ovarian function were observed over 1 year of follow-up.
WHAT IS KNOWN ALREADY
Several investigators have reported improved responses to ovulation induction after treatment with PRP. However, previous published reports have involved, at most, only small case series. Whether PRP actually improves ovarian performance is, therefore, still unknown. PRP is nevertheless widely offered as an ‘established’ fertility treatment, often under the term ‘ovarian rejuvenation’.
STUDY DESIGN, SIZE, DURATION
We are reporting a prospective cohort study of 80 consecutive patients at ages 28–54 with LFOR, defined by anti-Müllerian hormone <1.1 ng/ml, FSH >12 mIU/ml or at least one prior IVF cycle with ≤3 oocytes within 1 year. The women were followed for 1 year after an intraovarian PRP procedure.
PARTICIPANTS/MATERIALS, SETTING, METHODS
PRP (1.5 ml) was injected into the cortex of ovaries with an average of 12 injections per ovary. Study participants were followed every 3 days for 2 weeks after PRP treatment with estradiol and FSH measurements and vaginal ultrasound to observe follicle growth and thereafter followed weekly. Beginning 1 month after their PRP treatment, participants underwent one or more cycles of ovarian stimulation for IVF. Outcome measures were endocrine response, and numbers of oocytes and embryos produced in response to a maximal gonadotropin stimulation before and after PRP treatment.
MAIN RESULTS AND THE ROLE OF CHANCE
In this study, women failed to demonstrate statistically significant outcome benefits from intraovarian PRP. However, two 40-year-old very poor-prognosis patients, with prior failed IVF cycles that never reached embryo transfer at other centers, achieved pregnancy, resulting in an ongoing pregnancy rate of 4.7% among patients who, following PRP, produced at least one oocyte (n = 42).
LIMITATIONS, REASONS FOR CAUTION
As an observational study of patients who performed poorly in past ovarian stimulation cycles, the improvement may be accounted for by regression to the mean. Similar considerations may also explain the occurrence of the two pregnancies.
WIDER IMPLICATIONS OF THE FINDINGS
This study demonstrates that, even in extremely poor prognosis patients due to LFOR, sporadic pregnancies are possible. The study, however, does not allow for the conclusion that those pregnancies were the consequence of PRP treatments. A case series, indeed, does not allow for such conclusions, even if results are more suggestive than here. This registered study, therefore, must be viewed as a preliminary report, with further data expected from this study but also from two other prospectively randomized ongoing registered studies with more controlled patient selection.
STUDY FUNDING/COMPETING INTEREST(S)
This work was supported by intramural funds from The Center for Human Reproduction and the not-for-profit research Foundation for Reproductive Medicine, both in New York, NY, USA. N.G. and D.H.B. are listed as co-inventors on several US patents. Some of these patents relate to pre-supplementation of hypo-androgenic infertile women with androgens, such as dehydroepiandrosterone and testosterone and, therefore, at least peripherally relate to the subject of this manuscript. They, as well as D.F.A., have also received research support, travel funds and speaker honoraria from several pharmaceutical and medical device companies, though none related to the here presented subject and manuscript. N.G. is a shareholder in Fertility Nutraceuticals and he and D.H.B. receive royalty payments from Fertility Nutraceuticals LLC. E.M. has no conflicts of interest to declare.
TRIAL REGISTRATION NUMBER
NCT04275700
Collapse
Affiliation(s)
- D H Barad
- The Center for Human Reproduction , New York, NY, USA
- The Foundation for Reproductive Medicine , New York, NY, USA
| | - D F Albertini
- The Center for Human Reproduction , New York, NY, USA
- Department of Developmental Cell Biology, Bedford Research Foundation , Bedford, MA, USA
| | - E Molinari
- The Center for Human Reproduction , New York, NY, USA
| | - N Gleicher
- The Center for Human Reproduction , New York, NY, USA
- The Foundation for Reproductive Medicine , New York, NY, USA
- Stem Cell Biology and Molecular Embryology Laboratory, The Rockefeller University , New York, NY, USA
- Department of Obstetrics and Gynecology, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
7
|
Sills ES. Ovarian recovery via autologous platelet-rich plasma: New benchmarks for condensed cytokine applications to reverse reproductive aging. Aging Med (Milton) 2022; 5:63-67. [PMID: 35309160 PMCID: PMC8917256 DOI: 10.1002/agm2.12196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/17/2022] Open
Abstract
Health and life expectancy gains have pushed the overall number of menopausal patients to record levels. Because maternal age at first pregnancy also continues to rise, it is unsurprising that reduced birth rates are consistently reported across many populations. Both trends severely strain national demographics and present a socioeconomic challenge for which no satisfactory solution currently exists. Symptomatic menopause and infertility/miscarriage are met with standard therapies like hormone replacement therapy (HRT) and in vitro fertilization, respectively. Although these accepted interventions do supply some cover, both are expensive, low yield, and not without controversy. Meanwhile, ovarian steroid output and competent oocyte availability approach unrecoverable loss beyond age ~35 years, irrespective of treatment. Received wisdom holds that postnatal oogenesis in humans is impossible, a tenet which until recently encountered little serious confrontation. Reassessing this paradigm is overdue given proof-of-concept work on native sex steroid rejuvenation, de novo euploid oogenesis, ovulation, blastocyst development, fetal growth, and healthy term livebirths-all apparently possible with intraovarian insertion of platelet-rich plasma (PRP). Discrete functional analysis of the full platelet-derived cytokine array carried with PRP unfortunately for now, is incomplete. Here, selected platelet releasate constituents and measured effects are framed to address advances in wellness and women's health. Emphasis is on cytokines best positioned to enable recovery of senescent ovarian function sufficient to suspend synthetic HRT dependency and/or permit egg retrieval and pregnancy. Whereas the chronicle of progress in other clinical fields does invite generalization of fresh platelet applications to reproductive endocrinology, basic mechanistic questions remain open.
Collapse
Affiliation(s)
- E. Scott Sills
- FertiGen CAG/Regenerative Biology GroupSan ClementeCaliforniaUSA
- Department of Obstetrics & GynecologyPalomar Medical CenterEscondidoCaliforniaUSA
| |
Collapse
|
8
|
Appraisal of Experimental Methods to Manage Menopause and Infertility: Intraovarian Platelet-Rich Plasma vs. Condensed Platelet-Derived Cytokines. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010003. [PMID: 35056311 PMCID: PMC8779970 DOI: 10.3390/medicina58010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
The first published description of intraovarian platelet-rich plasma (PRP) appeared in mid-2016, when a new experimental technique was successfully used in adult human ovaries to correct the reduced fertility potential accompanying advanced maternal age. Considering the potential therapeutic scope of intraovarian PRP would likely cover both menopause and infertility, the mainstream response has ranged from skeptical disbelief to welcome astonishment. Indeed, reports of intraovarian PRP leading to restored menses in menopause (as an alternative to conventional hormone replacement therapy) and healthy term livebirths for infertility patients (from IVF or as unassisted conceptions) continue to draw notice. Yet, any proper criticism of ovarian PRP applications will be difficult to rebut given the heterogenous patient screening, varied sample preparations, wide differences in platelet incubation and activation protocols, surgical/anesthesia techniques, and delivery methods. Notwithstanding these aspects, no adverse events have thus far been reported and ovarian PRP appears well tolerated by patients. Here, early studies guiding the transition of ‘ovarian rejuvenation’ from experimental to clinical are outlined, with mechanisms to explain results observed in both veterinary and human ovarian PRP research. Current and future challenges for intraovarian cytokine treatment are also discussed.
Collapse
|
9
|
Sills ES, Wood SH. Progress in human ovarian rejuvenation: Current platelet-rich plasma and condensed cytokine research activity by scope and international origin. Clin Exp Reprod Med 2021; 48:311-315. [PMID: 34875738 PMCID: PMC8651764 DOI: 10.5653/cerm.2021.04651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
Objective As clinicians and patients await consensus on intraovarian platelet-rich plasma (PRP) treatment, this project evaluated contemporary research trends in the literature. Methods A PubMed/NLM search aggregated all ovarian PRP-related publications (n=54) to evaluate their scope, abstract utility, submission-to-publication interval, journal selected, article processing charge (APC), free reader access to full-text manuscripts, number and nationality of authors, and inclusion of international collaborators. The NIH Clinical Trials database was also audited. Results Published output on intraovarian PRP has increased consistently since 2016, especially among investigators in Greece, Iran, USA, and Turkey. Between 2013 and 2021, 42 articles met the relevancy criteria, of which 40.5% reported clinical studies, small series, or case reports, 33% described experimental animal models, and 23.8% were opinion/review papers. Only two works included a placebo control group. The submission-to-publication interval (mean±standard deviation) was 130±96 days, there were 5.9±3.2 authors per project, and journals invoiced US $1,642±1,466 (range, $0–$3,860) for APCs. Conclusion There was no correlation between APC and time to publish (Pearson’s r=–0.01). Abstract content was inconsistent; sample size and patient age were often missing, yet free full-text “open access” was available for most publications (59.5%). The NIH Clinical Trials portal lists eight registered studies on “ovarian rejuvenation,” of which two are actively recruiting patients, while four have been terminated or have an uncertain status. Two studies have concluded, with results from one posted to the NIH website. PRP and its derivatives for ovarian treatment show early promise, but require further investigation. Research is accelerating and should be encouraged, particularly placebo-controlled randomized clinical trials.
Collapse
Affiliation(s)
- E Scott Sills
- Plasma Research Section, FertiGen CAG/Regenerative Biology Group, San Clemente, CA, USA.,Department of Obstetrics and Gynecology, Palomar Medical Center, Escondido, CA, USA
| | - Samuel H Wood
- Department of Obstetrics and Gynecology, Palomar Medical Center, Escondido, CA, USA.,Gen 5 Fertility Center, San Diego, CA, USA
| |
Collapse
|