1
|
Chang X, Zhang S, Li C, Zhang H, Yang W, Zhang W, Ye Z, Liang Y, Qiu X, Zeng J. Inhibitory Effect of Lactobacillus Paracasei CMU-Pb-L5 In a Subcutaneous Transplanted Tumor Model of Colorectal Cancer. Int J Med Sci 2024; 21:2525-2536. [PMID: 39439459 PMCID: PMC11492875 DOI: 10.7150/ijms.99646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Lactobacillus paracasei (L.p) is a prevalent probiotic strain within the Lactobacillus genus, which has robust intestinal colonization capabilities. Previous studies have demonstrated the anticancer properties of L.p both in vivo and in vitro. However, the mechanisms underlying its anticancer activity in vivo remain unclear. This study established a subcutaneous transplanted tumor model of colorectal cancer (CRC) in mice to investigate the impact of L.p CMU-Pb-L5. Various parameters including tumor volume, tumor weight, histological alterations in tumor tissue, levels of polyamines and immune-related cytokines in serum, as well as the expression of polyamine metabolism-related and apoptosis-related proteins were evaluated. The results suggested that L.p CMU-Pb-L5 exhibited inhibitory effects on tumor cell proliferation, promotion of tumor cell apoptosis, reduction in polyamine levels, and enhancement of the immune response in CRC mice. To sum up, these results suggested that L.p CMU-Pb-L5 holds promise for potential clinical applications in the treatment of CRC.
Collapse
Affiliation(s)
- Xiaodan Chang
- Department of Neonatology, The Second Central Hospital of Baoding, Baoding 071051, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Shaobing Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Cong Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Metabolic Immunology and Oral Disease, Department of Stomatology, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Community health service center of Dongguan Dalang Town, Dongguan 523000, China
| | - Ziyu Ye
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Molecular Immunopathology, Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan 523000, China
| | - Xianxiu Qiu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, China
| |
Collapse
|
2
|
Lai WY, Chuang TP, Borenäs M, Lind DE, Hallberg B, Palmer RH. Anaplastic Lymphoma Kinase signaling stabilizes SLC3A2 expression via MARCH11 to promote neuroblastoma cell growth. Cell Death Differ 2024; 31:910-923. [PMID: 38858548 PMCID: PMC11239919 DOI: 10.1038/s41418-024-01319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Solute Carrier Family 3, Member 2 (SLC3A2 or 4F2hc) is a multifunctional glycoprotein that mediates integrin-dependent signaling, acts as a trafficking chaperone for amino acid transporters, and is involved in polyamine transportation. We identified SLC3A2 as a potential Anaplastic Lymphoma Kinase (ALK) interacting partner in a BioID-proximity labeling screen in neuroblastoma (NB) cells. In this work we show that endogenous SLC3A2 and ALK interact in NB cells and that this SLC3A2:ALK interaction was abrogated upon treatment with the ALK inhibitor lorlatinib. We show here that loss of ALK activity leads to decreased SLC3A2 expression and reduced SLC3A2 protein stability in a panel of NB cell lines, while stimulation of ALK with ALKAL2 ligand resulted in increased SLC3A2 protein levels. We further identified MARCH11, an E3 ligase, as a regulator of SLC3A2 ubiquitination downstream of ALK. Further, knockdown of SLC3A2 resulted in inhibition of NB cell growth. To investigate the therapeutic potential of SLC3A2 targeting, we performed monotreatment of NB cells with AMXT-1501 (a polyamine transport inhibitor), which showed only moderate effects in NB cells. In contrast, a combination lorlatinib/AMXT-1501 treatment resulted in synergistic inhibition of cell growth in ALK-driven NB cell lines. Taken together, our results identify a novel role for the ALK receptor tyrosine kinase (RTK), working in concert with the MARCH11 E3 ligase, in regulating SLC3A2 protein stability and function in NB cells. The synergistic effect of combined ALK and polyamine transport inhibition shows that ALK/MARCH11/SLC3A2 regulation of amino acid transport is important for oncogenic growth and survival in NB cells.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
3
|
Okinaka Y, Kageyama S, Goto T, Sugimoto M, Tomita A, Aizawa Y, Kobayashi K, Wada A, Kawauchi A, Kataoka Y. Metabolomic profiling of cancer-related fatigue involved in cachexia and chemotherapy. Sci Rep 2024; 14:8329. [PMID: 38594321 PMCID: PMC11004174 DOI: 10.1038/s41598-024-57747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Patients with advanced cancer are frequently burdened with a severe sensation of fatigue called cancer-related fatigue (CRF). CRF is induced at various stages and treatments, such as cachexia and chemotherapy, and reduces the overall survival of patients. Objective and quantitative assessment of CRF could contribute to the diagnosis and prediction of treatment efficacy. However, such studies have not been intensively performed, particularly regarding metabolic profiles. Here, we conducted plasma metabolomics of 15 patients with urological cancer. The patients with and without fatigue, including those with cachexia or chemotherapy-induced fatigue, were compared. Significantly lower concentrations of valine and tryptophan were observed in fatigued patients than in non-fatigued patients. In addition, significantly higher concentrations of polyamine pathway metabolites were observed in patients with fatigue and cachexia than in those without cachexia. Patients with exacerbated fatigue due to chemotherapy showed significantly decreased cysteine and methionine metabolism before chemotherapy compared with those without fatigue exacerbation. These findings suggest that plasma metabolic profiles could help improve the diagnosis and monitoring of CRF.
Collapse
Affiliation(s)
- Yuki Okinaka
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Toshiyuki Goto
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 650-0047, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Atsumi Tomita
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Yumi Aizawa
- Institute of Medical Science, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kenichi Kobayashi
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akinori Wada
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, Shiga, 520-2192, Japan
| | - Yosky Kataoka
- RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 650-0047, Japan.
| |
Collapse
|
4
|
Massudi H, Luo JS, Holien JK, Gadde S, Krishan S, Herath M, Koach J, Stevenson BW, Gorman MA, Venkat P, Mayoh C, Luo XQ, Parker MW, Cheung BB, Marshall GM. Inhibitors of the Oncogenic PA2G4-MYCN Protein-Protein Interface. Cancers (Basel) 2023; 15:cancers15061822. [PMID: 36980710 PMCID: PMC10046377 DOI: 10.3390/cancers15061822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
MYCN is a major oncogenic driver for neuroblastoma tumorigenesis, yet there are no direct MYCN inhibitors. We have previously identified PA2G4 as a direct protein-binding partner of MYCN and drive neuroblastoma tumorigenesis. A small molecule known to bind PA2G4, WS6, significantly decreased tumorigenicity in TH-MYCN neuroblastoma mice, along with the inhibition of PA2G4 and MYCN interactions. Here, we identified a number of novel WS6 analogues, with 80% structural similarity, and used surface plasmon resonance assays to determine their binding affinity. Analogues #5333 and #5338 showed direct binding towards human recombinant PA2G4. Importantly, #5333 and #5338 demonstrated a 70-fold lower toxicity for normal human myofibroblasts compared to WS6. Structure-activity relationship analysis showed that a 2,3 dimethylphenol was the most suitable substituent at the R1 position. Replacing the trifluoromethyl group on the phenyl ring at the R2 position, with a bromine or hydrogen atom, increased the difference between efficacy against neuroblastoma cells and normal myofibroblast toxicity. The WS6 analogues inhibited neuroblastoma cell phenotype in vitro, in part through effects on apoptosis, while their anti-cancer effects required both PA2G4 and MYCN expression. Collectively, chemical inhibition of PA2G4-MYCN binding by WS6 analogues represents a first-in-class drug discovery which may have implications for other MYCN-driven cancers.
Collapse
Affiliation(s)
- Hassina Massudi
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Jie-Si Luo
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Jessica K. Holien
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Satyanarayana Gadde
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Sukriti Krishan
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Mika Herath
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Jessica Koach
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Brendan W. Stevenson
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael A. Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pooja Venkat
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Chelsea Mayoh
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2750, Australia
| | - Xue-Qun Luo
- Department of Paediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510060, China
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- ACRF Facility for Innovative Cancer Drug Discovery, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Belamy B. Cheung
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2750, Australia
- Correspondence: (B.B.C.); (G.M.M.); Tel.: +61-(02)-9385-2450 (B.B.C.); +61-(02)-9382-1721 (G.M.M.); Fax: +61-(02)-9662-6584 (B.B.C.); +61-(02)-9382-1789 (G.M.M.)
| | - Glenn M. Marshall
- Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2750, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Correspondence: (B.B.C.); (G.M.M.); Tel.: +61-(02)-9385-2450 (B.B.C.); +61-(02)-9382-1721 (G.M.M.); Fax: +61-(02)-9662-6584 (B.B.C.); +61-(02)-9382-1789 (G.M.M.)
| |
Collapse
|
5
|
Chen Y, León-Letelier RA, Abdel Sater AH, Vykoukal J, Dennison JB, Hanash S, Fahrmann JF. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers (Basel) 2023; 15:623. [PMID: 36765581 PMCID: PMC9913358 DOI: 10.3390/cancers15030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Fahrmann JF, Saini NY, Chia-Chi C, Irajizad E, Strati P, Nair R, Fayad LE, Ahmed S, Lee HJ, Iyer S, Steiner R, Vykoukal J, Wu R, Dennison JB, Nastoupil L, Jain P, Wang M, Green M, Westin J, Blumenberg V, Davila M, Champlin R, Shpall EJ, Kebriaei P, Flowers CR, Jain M, Jenq R, Stein-Thoeringer CK, Subklewe M, Neelapu SS, Hanash S. A polyamine-centric, blood-based metabolite panel predictive of poor response to CAR-T cell therapy in large B cell lymphoma. Cell Rep Med 2022; 3:100720. [PMID: 36384092 PMCID: PMC9729795 DOI: 10.1016/j.xcrm.2022.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed or refractory (r/r) large B cell lymphoma (LBCL) results in durable response in only a subset of patients. MYC overexpression in LBCL tumors is associated with poor response to treatment. We tested whether an MYC-driven polyamine signature, as a liquid biopsy, is predictive of response to anti-CD19 CAR-T therapy in patients with r/r LBCL. Elevated plasma acetylated polyamines were associated with non-durable response. Concordantly, increased expression of spermidine synthase, a key enzyme that regulates levels of acetylated spermidine, was prognostic for survival in r/r LBCL. A broad metabolite screen identified additional markers that resulted in a 6-marker panel (6MetP) consisting of acetylspermidine, diacetylspermidine, and lysophospholipids, which was validated in an independent set from another institution as predictive of non-durable response to CAR-T therapy. A polyamine centric metabolomics liquid biopsy panel has predictive value for response to CAR-T therapy in r/r LBCL.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Neeraj Y Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chang Chia-Chi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hun Ju Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Swaminathan Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Viktoria Blumenberg
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; National Center for Tumor Diseases (NCT), Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Marco Davila
- Department of Blood and Marrow Transplant and Cellular Therapy, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Jain
- Department of Blood and Marrow Transplant and Cellular Therapy, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Christoph K Stein-Thoeringer
- National Center for Tumor Diseases (NCT), Neuenheimer Feld 460, 69120 Heidelberg, Germany; German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany; Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany.
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Barco S, Lavarello C, Cangelosi D, Morini M, Eva A, Oneto L, Uva P, Tripodi G, Garaventa A, Conte M, Petretto A, Cangemi G. Untargeted LC-HRMS Based-Plasma Metabolomics Reveals 3-O-Methyldopa as a New Biomarker of Poor Prognosis in High-Risk Neuroblastoma. Front Oncol 2022; 12:845936. [PMID: 35756625 PMCID: PMC9231354 DOI: 10.3389/fonc.2022.845936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial malignant tumor in children. Although the survival rate of NB has improved over the years, the outcome of NB still remains poor for over 30% of cases. A more accurate risk stratification remains a key point in the study of NB and the availability of novel prognostic biomarkers of "high-risk" at diagnosis could help improving patient stratification and predicting outcome. In this paper we show a biomarker discovery approach applied to the plasma of 172 NB patients. Plasma samples from a first cohort of NB patients and age-matched healthy controls were used for untargeted metabolomics analysis based on high-resolution mass spectrometry (HRMS). Differential expression analysis highlighted a number of metabolites annotated with a high degree of identification. Among them, 3-O-methyldopa (3-O-MD) was validated in a second cohort of NB patients using a targeted metabolite profiling approach and its prognostic potential was also analyzed by survival analysis on patients with 3 years follow-up. High expression of 3-O-MD was associated with worse prognosis in the subset of patients with stage M tumor (log-rank p < 0.05) and, among them, it was confirmed as a prognostic factor able to stratify high-risk patients older than 18 months. 3-O-MD might be thus considered as a novel prognostic biomarker of NB eligible to be included at diagnosis among catecholamine metabolite panels in prospective clinical studies. Further studies are warranted to exploit other potential biomarkers highlighted using our approach.
Collapse
Affiliation(s)
- Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Oneto
- DIBRIS, University of Genoa, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gino Tripodi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alberto Garaventa
- Department of Pediatric Oncology and Hematology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Massimo Conte
- Department of Pediatric Oncology and Hematology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Core Facilities Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
8
|
Nanospermidine in Combination with Nanofenretinide Induces Cell Death in Neuroblastoma Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14061215. [PMID: 35745787 PMCID: PMC9229898 DOI: 10.3390/pharmaceutics14061215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
A new strategy to cause cell death in tumors might be the increase of intracellular polyamines at concentrations above their physiological values to trigger the production of oxidation metabolites at levels exceeding cell tolerance. To test this hypothesis, we prepared nanospermidine as a carrier for spermidine penetration into the cells, able to escape the polyamine transport system that strictly regulates intracellular polyamine levels. Nanospermidine was prepared by spermidine encapsulation in nanomicelles and was characterized by size, zeta potential, loading, dimensional stability to dilution, and stability to spermidine leakage. Antitumor activity, ROS production, and cell penetration ability were evaluated in vitro in two neuroblastoma cell lines (NLF and BR6). Nanospermidine was tested as a single agent and in combination with nanofenretinide. Free spermidine was also tested as a comparison. The results indicated that the nanomicelles successfully transported spermidine into the cells inducing cell death in a concentration range (150–200 μM) tenfold lower than that required to provide similar cytotoxicity with free spermidine (1500–2000 μM). Nanofenretinide provided a cytostatic effect in combination with the lowest nanospermidine concentrations evaluated and slightly improved nanospermidine cytotoxicity at the highest concentrations. These data suggest that nanospermidine has the potential to become a new approach in cancer treatment. At the cellular level, in fact, it exploits polyamine catabolism by means of biocompatible doses of spermidine and, in vivo settings, it can exploit the selective accumulation of nanomedicines at the tumor site. Nanofenretinide combination further improves its efficacy. Furthermore, the proven ability of spermidine to activate macrophages and lymphocytes suggests that nanospermidine could inhibit immunosuppression in the tumor environment.
Collapse
|
9
|
Coradduzza D, Solinas T, Azara E, Culeddu N, Cruciani S, Zinellu A, Medici S, Maioli M, Madonia M, Carru C. Plasma Polyamine Biomarker Panels: Agmatine in Support of Prostate Cancer Diagnosis. Biomolecules 2022; 12:biom12040514. [PMID: 35454104 PMCID: PMC9024899 DOI: 10.3390/biom12040514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer is the most frequent malignant tumour among males (19%), often clinically silent and of difficult prognosis. Although several studies have highlighted the diagnostic and prognostic role of circulating biomarkers, such as PSA, their measurement does not necessarily allow the detection of the disease. Within this context, many authors suggest that the evaluation of circulating polyamines could represent a valuable tool, although several analytical problems still counteract their clinical practice. In particular, agmatine seems particularly intriguing, being a potential inhibitor of polyamines commonly derived from arginine. The aim of the present work was to evaluate the potential role of agmatine as a suitable biomarker for the identification of different classes of patients with prostate cancer (PC). For this reason, three groups of human patients—benign prostatic hyperplasia (BPH), precancerous lesion (PL), and prostate cancer (PC)—were recruited from a cohort of patients with suspected prostate cancer (n = 170), and obtained plasma was tested using the LC-HRMS method. Statistics on the receiver operating characteristics curve (ROC), and multivariate analysis were used to examine the predictive value of markers for discrimination among the three patient groups. Statistical analysis models revealed good discrimination using polyamine levels to distinguish the three classes of patients. AUC above 0.8, sensitivity ranging from 67% to 89%, specificity ranging from 74% to 89% and accuracy from 73% to 86%, considering the validation set, were achieved. Agmatine plasma levels were measured in PC (39.9 ± 12.06 ng/mL), BPH (77.62 ± 15.05 ng/mL), and PL (53.31 ± 15.27 ng/mL) patients. ROC analysis of the agmatine panel showed an AUC of 0.959 and p ≤ 0.001. These results could represent a future tool able to discriminate patients belonging to the three different clinical groups.
Collapse
Affiliation(s)
- Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.C.); (A.Z.); (M.M.)
| | - Tatiana Solinas
- Department of Clinical and Experimental Medicine, Urologic Clinic, University of Sassari, 07100 Sassari, Italy; (T.S.); (M.M.)
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, 07100 Sassari, Italy; (E.A.); (N.C.)
| | - Nicola Culeddu
- Institute of Biomolecular Chemistry, National Research Council, 07100 Sassari, Italy; (E.A.); (N.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.C.); (A.Z.); (M.M.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.C.); (A.Z.); (M.M.)
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.C.); (A.Z.); (M.M.)
| | - Massimo Madonia
- Department of Clinical and Experimental Medicine, Urologic Clinic, University of Sassari, 07100 Sassari, Italy; (T.S.); (M.M.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.C.); (S.C.); (A.Z.); (M.M.)
- Department of Biomedical Sciences and University Hospital of Sassari (AOU), 07100 Sassari, Italy
- Correspondence:
| |
Collapse
|
10
|
Jiang Y, Chen L, Chao Z, Chen T, Zhou Y. Ferroptosis Related Genes in Ischemic and Idiopathic Cardiomyopathy: Screening for Potential Pharmacological Targets. Front Cell Dev Biol 2022; 10:817819. [PMID: 35309948 PMCID: PMC8927736 DOI: 10.3389/fcell.2022.817819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Ferroptosis is a new form of cell death recently discovered that is distinct from apoptosis, necrosis and autophagy. This article is expected to provide a new direction for the treatment of cardiomyopathy in the future by screening potential drug targets associated with ferroptosis. Methods: Differential expression analysis of GSE5406 from the Gene Expression Omnibus (GEO) database was performed using the GEO2R tool. Functional annotation of ferroptosis related genes was also performed. Then we constructed protein-protein interaction networks and identified hub genes using Cytoscape. The candidates for pharmacological compounds targeting the hub genes were screened by cMap. Results: Totally 15 ferroptosis related genes (4 upregulated and 11 downregulated) for ischemic cardiomyopathy and 17 ferroptosis related genes (13 upregulated and 4 downregulated) for idiopathic cardiomyopathy were found. The biological processes involved in these genes mainly include negative regulation of apoptotic process, flavonoid metabolic process, response to drug for ischemic cardiomyopathy and cellular response to fibroblast growth factor stimulus, negative regulation of apoptotic process, and response to drug for idiopathic cardiomyopathy. KEGG results showed that these genes were mainly involved in MAPK signaling pathway for ischemic cardiomyopathy and PI3K-Akt signaling pathway for idiopathic cardiomyopathy. We generated a co-expression network for hub genes and obtained top 10 medications suggested respectively for ischemic/idiopathic cardiomyopathy. Conclusion: Our study reveals the potential role of ferroptosis related genes in ischemic and idiopathic cardiomyopathy through bioinformatics analysis. The hub genes and potential drugs may become novel biomarkers for prognosis and precision treatment in the future.
Collapse
Affiliation(s)
- Yufeng Jiang
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
| | - Ling Chen
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhujun Chao
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Tan Chen
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
- *Correspondence: Tan Chen, ; Yafeng Zhou,
| | - Yafeng Zhou
- Department of Cardiology, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, China
- *Correspondence: Tan Chen, ; Yafeng Zhou,
| |
Collapse
|
11
|
Law ME, Davis BJ, Ghilardi AF, Yaaghubi E, Dulloo ZM, Wang M, Guryanova OA, Heldermon CD, Jahn SC, Castellano RK, Law BK. Repurposing Tranexamic Acid as an Anticancer Agent. Front Pharmacol 2022; 12:792600. [PMID: 35095503 PMCID: PMC8793890 DOI: 10.3389/fphar.2021.792600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Tranexamic Acid (TA) is a clinically used antifibrinolytic agent that acts as a Lys mimetic to block binding of Plasminogen with Plasminogen activators, preventing conversion of Plasminogen to its proteolytically activated form, Plasmin. Previous studies suggested that TA may exhibit anticancer activity by blockade of extracellular Plasmin formation. Plasmin-mediated cleavage of the CDCP1 protein may increase its oncogenic functions through several downstream pathways. Results presented herein demonstrate that TA blocks Plasmin-mediated excision of the extracellular domain of the oncoprotein CDCP1. In vitro studies indicate that TA reduces the viability of a broad array of human and murine cancer cell lines, and breast tumor growth studies demonstrate that TA reduces cancer growth in vivo. Based on the ability of TA to mimic Lys and Arg, we hypothesized that TA may perturb multiple processes that involve Lys/Arg-rich protein sequences, and that TA may alter intracellular signaling pathways in addition to blocking extracellular Plasmin production. Indeed, TA-mediated suppression of tumor cell viability is associated with multiple biochemical actions, including inhibition of protein synthesis, reduced activating phosphorylation of STAT3 and S6K1, decreased expression of the MYC oncoprotein, and suppression of Lys acetylation. Further, TA inhibited uptake of Lys and Arg by cancer cells. These findings suggest that TA or TA analogs may serve as lead compounds and inspire the production of new classes of anticancer agents that function by mimicking Lys and Arg.
Collapse
Affiliation(s)
- Mary E. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Bradley J. Davis
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Amanda F. Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Zaafir M. Dulloo
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Mengxiong Wang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Coy D. Heldermon
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
- Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Stephan C. Jahn
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Ronald K. Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
- UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Nakkina SP, Gitto SB, Pandey V, Parikh JG, Geerts D, Maurer HC, Olive KP, Phanstiel O, Altomare DA. Differential Expression of Polyamine Pathways in Human Pancreatic Tumor Progression and Effects of Polyamine Blockade on Tumor Microenvironment. Cancers (Basel) 2021; 13:6391. [PMID: 34945011 PMCID: PMC8699198 DOI: 10.3390/cancers13246391] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death. Existing therapies only moderately improve pancreatic ductal adenocarcinoma (PDAC) patient prognosis. The present study investigates the importance of the polyamine metabolism in the pancreatic tumor microenvironment. Relative mRNA expression analysis identified differential expression of polyamine biosynthesis, homeostasis, and transport mediators in both pancreatic epithelial and stromal cells from low-grade pancreatic intraepithelial neoplasia (PanIN-1) or primary PDAC patient samples. We found dysregulated mRNA levels that encode for proteins associated with the polyamine pathway of PDAC tumors compared to early lesions. Next, bioinformatic databases were used to assess expression of select genes involved in polyamine metabolism and their impact on patient survival. Higher expression of pro-polyamine genes was associated with poor patient prognosis, supporting the use of a polyamine blockade therapy (PBT) strategy for inhibiting pancreatic tumor progression. Moreover, PBT treatment of syngeneic mice injected intra-pancreatic with PAN 02 tumor cells resulted in increased survival and decreased tumor weights of PDAC-bearing mice. Histological assessment of PBT-treated tumors revealed macrophage presence and significantly increased expression of CD86, a T cell co-stimulatory marker. Collectively, therapies which target polyamine metabolism can be used to disrupt tumor progression, modulate tumor microenvironment, and extend overall survival.
Collapse
Affiliation(s)
- Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Sarah B. Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.G.); (V.P.)
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Veethika Pandey
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.G.); (V.P.)
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jignesh G. Parikh
- Department of Pathology, Orlando VA Medical Center, 13800 Veterans Way, Orlando, FL 32827, USA;
| | - Dirk Geerts
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Hans Carlo Maurer
- Internal Medicine II, School of Medicine, Technische Universität München, 81675 Munich, Germany;
| | - Kenneth P. Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32826, USA
| | - Deborah A. Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
13
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
14
|
Nakanishi S, Cleveland JL. Polyamine Homeostasis in Development and Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2021; 9:medsci9020028. [PMID: 34068137 PMCID: PMC8162569 DOI: 10.3390/medsci9020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Polycationic polyamines are present in nearly all living organisms and are essential for mammalian cell growth and survival, and for development. These positively charged molecules are involved in a variety of essential biological processes, yet their underlying mechanisms of action are not fully understood. Several studies have shown both beneficial and detrimental effects of polyamines on human health. In cancer, polyamine metabolism is frequently dysregulated, and elevated polyamines have been shown to promote tumor growth and progression, suggesting that targeting polyamines is an attractive strategy for therapeutic intervention. In contrast, polyamines have also been shown to play critical roles in lifespan, cardiac health and in the development and function of the brain. Accordingly, a detailed understanding of mechanisms that control polyamine homeostasis in human health and disease is needed to develop safe and effective strategies for polyamine-targeted therapy.
Collapse
|
15
|
Tabbaa M, Ruz Gomez T, Campelj DG, Gregorevic P, Hayes A, Goodman CA. The regulation of polyamine pathway proteins in models of skeletal muscle hypertrophy and atrophy: a potential role for mTORC1. Am J Physiol Cell Physiol 2021; 320:C987-C999. [PMID: 33881936 DOI: 10.1152/ajpcell.00078.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyamines have been shown to be absolutely required for protein synthesis and cell growth. The serine/threonine kinase, the mechanistic target of rapamycin complex 1 (mTORC1), also plays a fundamental role in the regulation of protein turnover and cell size, including in skeletal muscle, where mTORC1 is sufficient to increase protein synthesis and muscle fiber size, and is necessary for mechanical overload-induced muscle hypertrophy. Recent evidence suggests that mTORC1 may regulate the polyamine metabolic pathway, however, there is currently no evidence in skeletal muscle. This study examined changes in polyamine pathway proteins during muscle hypertrophy induced by mechanical overload (7 days), with and without the mTORC1 inhibitor, rapamycin, and during muscle atrophy induced by food deprivation (48 h) and denervation (7 days) in mice. Mechanical overload induced an increase in mTORC1 signaling, protein synthesis and muscle mass, and these were associated with rapamycin-sensitive increases in adenosylmethione decarboxylase 1 (Amd1), spermidine synthase (SpdSyn), and c-Myc. Food deprivation decreased mTORC1 signaling, protein synthesis, and muscle mass, accompanied by a decrease in spermidine/spermine acetyltransferase 1 (Sat1). Denervation, resulted increased mTORC1 signaling and protein synthesis, and decreased muscle mass, which was associated with an increase in SpdSyn, spermine synthase (SpmSyn), and c-Myc. Combined, these data show that polyamine pathway enzymes are differentially regulated in models of altered mechanical and metabolic stress, and that Amd1 and SpdSyn are, in part, regulated in a mTORC1-dependent manner. Furthermore, these data suggest that polyamines may play a role in the adaptive response to stressors in skeletal muscle.
Collapse
Affiliation(s)
- Michael Tabbaa
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, Australia
| | - Tania Ruz Gomez
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, Australia
| | - Dean G Campelj
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Physiology, The University of Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.,Department of Neurology, The University of Washington School of Medicine, Seattle, Washington
| | - Alan Hayes
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, Australia.,Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria, Australia.,Centre for Muscle Research (CMR), Department of Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Barros M, López-Carrasco A, Amorós P, Gil S, Gaviña P, Parra M, El Haskouri J, Terencio MC, Costero AM. Chromogenic Chemodosimeter Based on Capped Silica Particles to Detect Spermine and Spermidine. NANOMATERIALS 2021; 11:nano11030818. [PMID: 33806899 PMCID: PMC8004735 DOI: 10.3390/nano11030818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022]
Abstract
A new hybrid organic–inorganic material for sensing spermine (Spm) and spermidine (Spd) has been prepared and characterized. The material is based on MCM-41 particles functionalized with an N-hydroxysuccinimide derivative and loaded with Rhodamine 6G. The cargo is kept inside the porous material due to the formation of a double layer of organic matter. The inner layer is covalently bound to the silica particles, while the external layer is formed through hydrogen and hydrophobic interactions. The limits of detection determined by fluorimetric titration are 27 µM and 45 µM for Spm and Spd, respectively. The sensor remains silent in the presence of other biologically important amines and is able to detect Spm and Spd in both aqueous solution and cells.
Collapse
Affiliation(s)
- Mariana Barros
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
| | - Alejandro López-Carrasco
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
| | - Pedro Amorós
- Instituto de Ciencia de Materiales (ICMUV), Universitat de València, P.O. Box 2085, 46071 Valencia, Spain;
- Correspondence: (P.A.); (A.M.C.)
| | - Salvador Gil
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Margarita Parra
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jamal El Haskouri
- Instituto de Ciencia de Materiales (ICMUV), Universitat de València, P.O. Box 2085, 46071 Valencia, Spain;
| | - Maria Carmen Terencio
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- Departamento de Farmacología, Universitat de València, Vicente Andrés Estellés S/n, Burjassot, 46100 Valencia, Spain
| | - Ana M. Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitad Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100 Valencia, Spain; (M.B.); (A.L.-C.); (S.G.); (P.G.); (M.P.); (M.C.T.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (P.A.); (A.M.C.)
| |
Collapse
|
17
|
Khan A, Gamble LD, Upton DH, Ung C, Yu DMT, Ehteda A, Pandher R, Mayoh C, Hébert S, Jabado N, Kleinman CL, Burns MR, Norris MD, Haber M, Tsoli M, Ziegler DS. Dual targeting of polyamine synthesis and uptake in diffuse intrinsic pontine gliomas. Nat Commun 2021; 12:971. [PMID: 33579942 PMCID: PMC7881014 DOI: 10.1038/s41467-021-20896-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an incurable malignant childhood brain tumor, with no active systemic therapies and a 5-year survival of less than 1%. Polyamines are small organic polycations that are essential for DNA replication, translation and cell proliferation. Ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme in polyamine synthesis, is irreversibly inhibited by difluoromethylornithine (DFMO). Herein we show that polyamine synthesis is upregulated in DIPG, leading to sensitivity to DFMO. DIPG cells compensate for ODC1 inhibition by upregulation of the polyamine transporter SLC3A2. Treatment with the polyamine transporter inhibitor AMXT 1501 reduces uptake of polyamines in DIPG cells, and co-administration of AMXT 1501 and DFMO leads to potent in vitro activity, and significant extension of survival in three aggressive DIPG orthotopic animal models. Collectively, these results demonstrate the potential of dual targeting of polyamine synthesis and uptake as a therapeutic strategy for incurable DIPG.
Collapse
Affiliation(s)
- Aaminah Khan
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Laura D. Gamble
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Dannielle H. Upton
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Caitlin Ung
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Denise M. T. Yu
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Anahid Ehteda
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Ruby Pandher
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Chelsea Mayoh
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Steven Hébert
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Human Genetics, McGill University, 3999 Côte Ste-Catherine Road, Montreal, QC H4A 3J1 Canada
| | - Nada Jabado
- grid.63984.300000 0000 9064 4811Department of Pediatrics, McGill University Health Center, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Claudia L. Kleinman
- grid.14709.3b0000 0004 1936 8649Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Human Genetics, McGill University, 3999 Côte Ste-Catherine Road, Montreal, QC H4A 3J1 Canada
| | - Mark R. Burns
- Aminex Therapeutics Inc., Suite #364, 6947 Coal Creek Parkway SE, Newcastle, WA 98059 USA
| | - Murray D. Norris
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Michelle Haber
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.1005.40000 0004 4902 0432Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW 2052 Australia
| | - Maria Tsoli
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia
| | - David S. Ziegler
- grid.1005.40000 0004 4902 0432Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW 2052 Australia ,grid.414009.80000 0001 1282 788XKids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, 2031 Australia
| |
Collapse
|
18
|
Murray Stewart T, Von Hoff D, Fitzgerald M, Marton LJ, Becerra CHR, Boyd TE, Conkling PR, Garbo LE, Jotte RM, Richards DA, Smith DA, Stephenson JJ, Vogelzang NJ, Wu HH, Casero RA. A Phase Ib multicenter, dose-escalation study of the polyamine analogue PG-11047 in combination with gemcitabine, docetaxel, bevacizumab, erlotinib, cisplatin, 5-fluorouracil, or sunitinib in patients with advanced solid tumors or lymphoma. Cancer Chemother Pharmacol 2020; 87:135-144. [PMID: 33215270 DOI: 10.1007/s00280-020-04201-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Polyamines are absolutely essential for maintaining tumor cell proliferation. PG-11047, a polyamine analogue, is a nonfunctional competitor of the natural polyamine spermine that has demonstrated anticancer activity in cells and animal models of multiple cancer types. Preclinical investigations into the effects of common chemotherapeutic agents have revealed overlap with components of the polyamine metabolic pathway also affected by PG-11047. This report describes a Phase Ib clinical trial investigating PG-11047 in combination with cytotoxic and anti-angiogenic chemotherapeutic agents in patients with advanced refractory metastatic solid tumors or lymphoma. METHODS A total of 172 patients were assigned to treatment arms based on cancer type to receive the appropriate standard-of-care therapy (gemcitabine, docetaxel, bevacizumab, erlotinib, cisplatin, 5-fluorouracil (5-FU), or sunitinib as directed) along with once weekly intravenous infusions of PG-11047. PG-11047 dose escalation ranged from 50 to 590 mg. RESULTS The maximum tolerated dose (MTD) of PG-11047 in combination with bevacizumab, erlotinib, cisplatin, and 5-FU was 590 mg. Dose-limiting toxicities (DLTs) in these groups were rare (5 of 148 patients). Overall partial responses (PR) were observed in 12% of patients treated with PG-11047 and bevacizumab, with stable disease documented in an additional 40%. Stable disease occurred in 71.4% of patients in the 5-FU arm, 54.1% in the cisplatin arm, and 33.3% in the erlotinib arm. Four of the patients receiving cisplatin + PG-11047 (20%) had unconfirmed PRs. MTDs for gemcitabine, docetaxel, and sunitinib could not be determined due to DLTs at low doses of PG-11047 and small sample size. CONCLUSIONS Results of this Phase Ib trial indicate that PG-11047 can be safely administered to patients in combination with bevacizumab, erlotinib, cisplatin, and 5-FU on the once weekly dosing schedule described and may provide therapeutic benefit. The manageable toxicity profile and high MTD determination provide a safety profile for further clinical studies.
Collapse
Affiliation(s)
- Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, CRB 1, Room 562, Baltimore, MD, 21287, USA.
| | - Daniel Von Hoff
- US Oncology Research, The Woodlands, TX, USA.,Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | | | | - Thomas E Boyd
- Yakima Valley Memorial Hospital North Star Lodge, Yakima, WA, USA
| | - Paul R Conkling
- US Oncology Research, The Woodlands, TX, USA.,Virginia Oncology Associates, Norfolk, VA, USA
| | - Lawrence E Garbo
- US Oncology Research, The Woodlands, TX, USA.,New York Oncology Hematology, Albany, NY, USA
| | - Robert M Jotte
- US Oncology Research, The Woodlands, TX, USA.,Rocky Mountain Cancer Centers, Lone Tree, CO, USA
| | - Donald A Richards
- US Oncology Research, The Woodlands, TX, USA.,Texas Oncology, Tyler, TX, USA
| | | | | | - Nicholas J Vogelzang
- US Oncology Research, The Woodlands, TX, USA.,Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA
| | | | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, CRB 1, Room 562, Baltimore, MD, 21287, USA. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, CRB 1, Room 551, Baltimore, MD, 21287, USA.
| |
Collapse
|
19
|
Protein Translation Inhibition is Involved in the Activity of the Pan-PIM Kinase Inhibitor PIM447 in Combination with Pomalidomide-Dexamethasone in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12102743. [PMID: 32987735 PMCID: PMC7598606 DOI: 10.3390/cancers12102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. METHODS Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. RESULTS Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. CONCLUSIONS Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.
Collapse
|
20
|
Koizumi K, Oku M, Hayashi S, Inujima A, Shibahara N, Chen L, Igarashi Y, Tobe K, Saito S, Kadowaki M, Aihara K. Suppression of Dynamical Network Biomarker Signals at the Predisease State ( Mibyou) before Metabolic Syndrome in Mice by a Traditional Japanese Medicine (Kampo Formula) Bofutsushosan. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:9129134. [PMID: 32831883 PMCID: PMC7424500 DOI: 10.1155/2020/9129134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Due to the increasing incidence of metabolic syndrome, the development of new therapeutic strategies is urgently required. One promising approach is to focus on the predisease state (so-called Mibyou in traditional Japanese medicine) before metabolic syndrome as a preemptive medical target. We recently succeeded in detecting a predisease state before metabolic syndrome using a mathematical theory called the dynamical network biomarker (DNB) theory. The detected predisease state was characterized by 147 DNB genes among a total of 24,217 genes in TSOD (Tsumura-Suzuki Obese Diabetes) mice, a well-accepted model of metabolic syndrome, at 5 weeks of age. The timing of the predisease state was much earlier than the onset of metabolic syndrome in TSOD mice reported to be at approximately 8-12 weeks of age. In the present study, we investigated whether the predisease state in TSOD mice can be inhibited by the oral administration of a Kampo formula, bofutsushosan (BTS), which is usually used to treat obese patients with metabolic syndrome in Japan, from 3 to 7 weeks of age. We found the comprehensive suppression of the early warning signals of the DNB genes by BTS at 5 weeks of age and later. Specifically, the standard deviations of 134 genes among the 147 DNB genes decreased at 5 weeks of age as compared to the nontreatment control group, and 80 of them showed more than 50% reduction. In addition, at 7 weeks of age, the body weight and blood glucose level were significantly lower in the BTS-treated group than in the nontreatment control group. The results of our study suggest a novel mechanism of BTS; it suppressed fluctuations of the DNB genes at the predisease state before metabolic syndrome and thus prevented the subsequent transition to metabolic syndrome. In conclusion, this study demonstrated the preventive and preemptive effects of a Kampo formula on Mibyou before metabolic syndrome for the first time based on scientific evaluation.
Collapse
Affiliation(s)
- Keiichi Koizumi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Drug Discovery and Development for Pre-disease, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makito Oku
- Division of Chemo-Bioinformatics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Chemo-Bioinformatics, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Gastrointestinal Disorder, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Akiko Inujima
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
- Laboratory of Drug Discovery and Development for Pre-disease, Section of Host Defences, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Naotoshi Shibahara
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Luonan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Preemptive Study, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Zhang Z, Li H, Li W, Feng Y, Hu Z, Zhou S, Zhang N, Peng Y, Zheng J. Evidence for Polyamine, Biogenic Amine, and Amino Acid Adduction Resulting from Metabolic Activation of Diosbulbin B. Chem Res Toxicol 2020; 33:1761-1769. [PMID: 32515193 DOI: 10.1021/acs.chemrestox.0c00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dioscorea bulbifera L. (DBL), a traditional Chinese medicine, is a well-known herb with hepatotoxicity, and the biochemical mechanisms of the toxic action remain unknown. Diosbulbin B (DSB), a major component of DBL, can induce severer liver injury which requires cytochrome P450-catalyzed oxidation of the furan ring. It is reported that a cis-enedial reactive intermediate resulting from metabolic activation of DSB can react with thiols and amines to form pyrrole or pyrroline derivatives. In this study, we investigated the interaction of the reactive intermediate with polyamines, biogenic amines, and amino acids involved in the polyamine metabolic pathway, including putrescine, spermidine, spermine, histamine, arginine, ornithine, lysine, glutamine, and asparagine. Seven DSB-derived amine adducts were detected in microsomal incubations supplemented with DSB and individual amines. Six adducts were observed in cultured rat primary hepatocytes after exposure to DSB. DSB was found to induce apoptosis and cell death in time- and concentration-dependent manners. Apparently, the observed apoptosis was associated with the detected amine adduction. The findings facilitate the understanding of the mechanisms of toxic action of DSB.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yukun Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shenzhi Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Na Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou 550004, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, P. R. China
| |
Collapse
|
22
|
Martella M, Catalanotto C, Talora C, La Teana A, Londei P, Benelli D. Inhibition of Eukaryotic Translation Initiation Factor 5A (eIF5A) Hypusination Suppress p53 Translation and Alters the Association of eIF5A to the Ribosomes. Int J Mol Sci 2020; 21:E4583. [PMID: 32605139 PMCID: PMC7369855 DOI: 10.3390/ijms21134583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for the viability of the cells whose proposed function is to prevent the stalling of the ribosomes during translation elongation. eIF5A activity requires a unique and functionally essential post-translational modification, the change of a lysine to hypusine. eIF5A is recognized as a promoter of cell proliferation, but it has also been suggested to induce apoptosis. To date, the precise molecular mechanism through which eIF5A affects these processes remains elusive. In the present study, we explored whether eIF5A is involved in controlling the stress-induced expression of the key cellular regulator p53. Our results show that treatment of HCT-116 colon cancer cells with the deoxyhypusine (DHS) inhibitor N1-guanyl-1,7-diamineheptane (GC7) caused both inhibition of eIF5A hypusination and a significant reduction of p53 expression in UV-treated cells, and that eIF5A controls p53 expression at the level of protein synthesis. Furthermore, we show that treatment with GC7 followed by UV-induced stress counteracts the pro-apoptotic process triggered by p53 up-regulation. More in general, the importance of eIF5A in the cellular stress response is illustrated by the finding that exposure to UV light promotes the binding of eIF5A to the ribosomes, whereas UV treatment complemented by the presence of GC7 inhibits such binding, allowing a decrease of de novo synthesis of p53 protein.
Collapse
Affiliation(s)
- Marianna Martella
- Division of Cancer Therapeutics, The Institute of Cancer Research, London SW7 3RP, UK
| | - Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291/324, 00161 Rome, Italy; (C.C.); (C.T.); (P.L.)
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291/324, 00161 Rome, Italy; (C.C.); (C.T.); (P.L.)
| | - Anna La Teana
- Department of Life and Environmental Science, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Paola Londei
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291/324, 00161 Rome, Italy; (C.C.); (C.T.); (P.L.)
| | - Dario Benelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291/324, 00161 Rome, Italy; (C.C.); (C.T.); (P.L.)
| |
Collapse
|
23
|
A phase I dose-escalation study of the polyamine analog PG-11047 in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 85:1089-1096. [PMID: 32447421 DOI: 10.1007/s00280-020-04082-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Polyamines are essential for the sustained proliferation and biomass required by tumor cells. Bis-alkylated polyamine analogs are nonfunctional competitors of natural polyamines. Of these, PG-11047, a second-generation unsaturated analog of the polyamine spermine, has demonstrated anticancer activity in cell lines and animal models of multiple cancer types. This report describes the first phase I clinical trial to investigate PG-11047 in patients with advanced refractory metastatic solid tumors. METHODS Forty-six patients were treated with 60-min intravenous infusions of PG-11047 using a 28-day dosing cycle with treatments on days 1, 8, and 15. Doses ranged from 50 to 750 mg. The treatment period consisted of at least two cycles. RESULTS The maximum tolerated dose of PG-11047 administered at this dosing schedule was 610 mg. Dose-limiting toxicities (DLT) were mainly gastrointestinal, including oral/anal mucositis and diarrhea; other DLTs included one case each of angioedema and a grade 3 alanine aminotransferase (ALT) increase. The most common adverse effects were fatigue and anorexia. Stable disease was documented in 30% of patients. CONCLUSION Results of this phase I trial suggest that PG-11047 can be safely administered to patients on the once weekly dosing schedule described. The manageable toxicity profile and high MTD determination provide a safety profile for further clinical studies, including those in combination with current chemotherapeutic agents.
Collapse
|
24
|
Gamble LD, Purgato S, Murray J, Xiao L, Yu DMT, Hanssen KM, Giorgi FM, Carter DR, Gifford AJ, Valli E, Milazzo G, Kamili A, Mayoh C, Liu B, Eden G, Sarraf S, Allan S, Di Giacomo S, Flemming CL, Russell AJ, Cheung BB, Oberthuer A, London WB, Fischer M, Trahair TN, Fletcher JI, Marshall GM, Ziegler DS, Hogarty MD, Burns MR, Perini G, Norris MD, Haber M. Inhibition of polyamine synthesis and uptake reduces tumor progression and prolongs survival in mouse models of neuroblastoma. Sci Transl Med 2020; 11:11/477/eaau1099. [PMID: 30700572 DOI: 10.1126/scitranslmed.aau1099] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
Amplification of the MYCN oncogene is associated with an aggressive phenotype and poor outcome in childhood neuroblastoma. Polyamines are highly regulated essential cations that are frequently elevated in cancer cells, and the rate-limiting enzyme in polyamine synthesis, ornithine decarboxylase 1 (ODC1), is a direct transcriptional target of MYCN. Treatment of neuroblastoma cells with the ODC1 inhibitor difluoromethylornithine (DFMO), although a promising therapeutic strategy, is only partially effective at impeding neuroblastoma cell growth due to activation of compensatory mechanisms resulting in increased polyamine uptake from the surrounding microenvironment. In this study, we identified solute carrier family 3 member 2 (SLC3A2) as the key transporter involved in polyamine uptake in neuroblastoma. Knockdown of SLC3A2 in neuroblastoma cells reduced the uptake of the radiolabeled polyamine spermidine, and DFMO treatment increased SLC3A2 protein. In addition, MYCN directly increased polyamine synthesis and promoted neuroblastoma cell proliferation by regulating SLC3A2 and other regulatory components of the polyamine pathway. Inhibiting polyamine uptake with the small-molecule drug AMXT 1501, in combination with DFMO, prevented or delayed tumor development in neuroblastoma-prone mice and extended survival in rodent models of established tumors. Our findings suggest that combining AMXT 1501 and DFMO with standard chemotherapy might be an effective strategy for treating neuroblastoma.
Collapse
Affiliation(s)
- Laura D Gamble
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Jayne Murray
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Denise M T Yu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Kimberley M Hanssen
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,School of Biomedical Engineering, University of Technology, Sydney, NSW 2007, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Bing Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Georgina Eden
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Sara Sarraf
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Sophie Allan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Claudia L Flemming
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia
| | - Amanda J Russell
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Belamy B Cheung
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Andre Oberthuer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matthias Fischer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne, Kerpener Strasse 62, D-50924 Cologne, Germany
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Michael D Hogarty
- Division of Oncology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Mark R Burns
- Aminex Therapeutics, Aminex Therapeutics Inc., Kirkland, WA 98034, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia.,University of New South Wales Centre for Childhood Cancer Research, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia. .,School of Women's & Children's Health, UNSW Australia, Randwick, NSW 2052, Australia
| |
Collapse
|
25
|
Guo T, Li B, Gu C, Chen X, Han M, Liu X, Xu C. PGC-1α inhibits polyamine metabolism in Cyclin E1-driven ovarian cancer. Cancer Med 2019; 8:7754-7761. [PMID: 31657115 PMCID: PMC6912055 DOI: 10.1002/cam4.2637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022] Open
Abstract
Aim Cyclin E1‐driven ovarian cancer (OvCa) is characterized with metabolic shift. In this study, we aim to pinpoint the metabolic pathway altered and assess its therapeutic potential. Methods In silico reproduction of TCGA ovarian cancer dataset and functional annotation using GSEA was performed. Candidate metabolic pathway was validated using in vitro and in vivo assays. Results From TCGA database, we found that polyamine metabolism was significantly enriched in Cyclin E1‐driven OvCa. Expressions of SMS, SRM, and ODC1 were positively correlated with that of CCNE1, respectively. ODC1 and SMS expressions were significantly correlated with decreased immune infiltrates. PGC‐1α silencing significantly decreased invasion and migration in both OvCa cell lines. Both spermidine and spermine levels were significantly increased when PGC‐1α was silenced. Targeting SRM significantly decreased spermine level in OVCAR3 cells, which was rescued when PGC‐1α was silenced. Silencing of PGC‐1α resulted in increased SRM in both OvCa cells. Dinaciclib significantly decreased invasion and migration of OVCAR3 cells. Expressions of PD‐L1 and PD‐L2 were predominantly in tumor‐infiltrating lymphocytes. Dinaciclib showed no notable effect of PD‐1 yet substantially induced the increased levels of PD‐L1 and PD‐L2. Conclusion Cyclin E1‐driven OvCa is characterized with activated polyamine synthesis, which is associated with decreased cancer immunity. Targeting polyamine and CDK2 may therefore sensitize this genotype to immune checkpoint blockade.
Collapse
Affiliation(s)
- Ting Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Bin Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Chao Gu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Xiuying Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Mengxin Han
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Xiaocheng Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| | - Congjian Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, PR China
| |
Collapse
|
26
|
Ayoola MB, Shack LA, Nakamya MF, Thornton JA, Swiatlo E, Nanduri B. Polyamine Synthesis Effects Capsule Expression by Reduction of Precursors in Streptococcus pneumoniae. Front Microbiol 2019; 10:1996. [PMID: 31555234 PMCID: PMC6727871 DOI: 10.3389/fmicb.2019.01996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus, Spn) colonizes the human nasopharynx asymptomatically but can cause infections such as otitis media, and invasive pneumococcal disease such as community-acquired pneumonia, meningitis, and sepsis. Although the success of Spn as a pathogen can be attributed to its ability to synthesize and regulate capsular polysaccharide (CPS) for survival in the host, the mechanisms of CPS regulation are not well-described. Recent studies from our lab demonstrate that deletion of a putative polyamine biosynthesis gene (ΔcadA) in Spn TIGR4 results in the loss of the capsule. In this study, we characterized the transcriptome and metabolome of ΔcadA and identified specific mechanisms that could explain the regulatory role of polyamines in pneumococcal CPS biosynthesis. Our data indicate that impaired polyamine synthesis impacts galactose to glucose interconversion via the Leloir pathway which limits the availability of UDP-galactose, a precursor of serotype 4 CPS, and UDP-N-acetylglucosamine (UDP-GlcNAc), a nucleotide sugar precursor that is at the intersection of CPS and peptidoglycan repeat unit biosynthesis. Reduced carbon flux through glycolysis, coupled with altered fate of glycolytic intermediates further supports impaired synthesis of UDP-GlcNAc. A significant increase in the expression of transketolases indicates a potential shift in carbon flow toward the pentose phosphate pathway (PPP). Higher PPP activity could constitute oxidative stress responses in ΔcadA which warrants further investigation. The results from this study clearly demonstrate the potential of polyamine synthesis, targeted for cancer therapy in human medicine, for the development of novel prophylactic and therapeutic strategies for treating bacterial infections.
Collapse
Affiliation(s)
- Moses B Ayoola
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Leslie A Shack
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mary F Nakamya
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Edwin Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
27
|
Abstract
This paper is in recognition of the 100th birthday of Dr. Herbert Tabor, a true pioneer in the polyamine field for over 70 years, who served as the editor-in-chief of the Journal of Biological Chemistry from 1971 to 2010. We review current knowledge of MYC proteins (c-MYC, MYCN, and MYCL) and focus on ornithine decarboxylase 1 (ODC1), an important bona fide gene target of MYC, which encodes the sentinel, rate-limiting enzyme in polyamine biosynthesis. Although notable advances have been made in designing inhibitors against the "undruggable" MYCs, their downstream targets and pathways are currently the main avenue for therapeutic anticancer interventions. To this end, the MYC-ODC axis presents an attractive target for managing cancers such as neuroblastoma, a pediatric malignancy in which MYCN gene amplification correlates with poor prognosis and high-risk disease. ODC and polyamine levels are often up-regulated and contribute to tumor hyperproliferation, especially of MYC-driven cancers. We therefore had proposed to repurpose α-difluoromethylornithine (DFMO), an FDA-approved, orally available ODC inhibitor, for management of neuroblastoma, and this intervention is now being pursued in several clinical trials. We discuss the regulation of ODC and polyamines, which besides their well-known interactions with DNA and tRNA/rRNA, are involved in regulating RNA transcription and translation, ribosome function, proteasomal degradation, the circadian clock, and immunity, events that are also controlled by MYC proteins.
Collapse
Affiliation(s)
- André S Bachmann
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503 and
| | - Dirk Geerts
- the Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
28
|
Abstract
Advances in our understanding of the metabolism and molecular functions of polyamines and their alterations in cancer have led to resurgence in the interest of targeting polyamine metabolism as an anticancer strategy. Increasing knowledge of the interplay between polyamine metabolism and other cancer-driving pathways, including the PTEN-PI3K-mTOR complex 1 (mTORC1), WNT signalling and RAS pathways, suggests potential combination therapies that will have considerable clinical promise. Additionally, an expanding number of promising clinical trials with agents targeting polyamines for both therapy and prevention are ongoing. New insights into molecular mechanisms linking dysregulated polyamine catabolism and carcinogenesis suggest additional strategies that can be used for cancer prevention in at-risk individuals. In addition, polyamine blocking therapy, a strategy that combines the inhibition of polyamine biosynthesis with the simultaneous blockade of polyamine transport, can be more effective than therapies based on polyamine depletion alone and may involve an antitumour immune response. These findings open up new avenues of research into exploiting aberrant polyamine metabolism for anticancer therapy.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| | - Tracy Murray Stewart
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|