1
|
Zhang J, Noor ZZ, Baharuddin NH, Setu SA, Hamzah MAAM, Zakaria ZA. Uptake of lead, cadmium and copper by heavy metal-resistant Pseudomonas aeruginosa strain DR7 isolated from soil. World J Microbiol Biotechnol 2024; 40:387. [PMID: 39567441 DOI: 10.1007/s11274-024-04194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
This study highlights the biosorption capacity for Cd (II), Cu (II) and Pb (II) by a locally isolated Pseudomonas aeruginosa DR7. At initial concentrations of 150 mg L-1 and 240 min of contact time, P. aeruginosa DR7 showed a 62.56 mg/g removal capacity for Cd (II) at an optimum pH of 6.0, 72.49 mg/g for Cu (II) at an optimum pH of 6.0, and 94.2 mg/g for Pb (II) at an optimum pH of 7.0. The experimental data of Cd (II), Cu (II), and Pb (II) adsorbed by the pseudo-second-order kinetic model correlates well with P. aeruginosa DR7, with R2 all above 0.99, showing that the fitting effect was satisfactory. The isothermal adsorption processes of Cd (II) (0.980) and Cu (II) (0.986) were more consistent with the Freundlich model, whereas Pb (II) was more consistent with the Langmuir model (0.978). FTIR analysis suggested the involvement of hydroxyl, carbonyl, carboxyl, and amine groups present in the inner regions of P. aeruginosa cells during the biosorption process. SEM-EDS analysis revealed that after contact with metals, there were slight changes in the surface appearance of the cells, which confirmed the deposition of metals on the bacterial surface. There was also the possibility of the metals being translocated into the bacterial inner regions by the appearance of electron-dense particles, as observed using TEM. As a conclusion, the removal of metals from solutions using P. aeruginosa DR7 was a plausible alternative as a safe, cheap, and easily used biosorbent.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zainura Zainon Noor
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Nurul Huda Baharuddin
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Siti Aminah Setu
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Mohd Amir Asyraf Mohd Hamzah
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Zainul Akmar Zakaria
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
2
|
Zhang R, Song C, Zhao Y, Zhang G, Xie L, Wei Z, Li H. A new strategy for treating Pb 2+ and Zn 2+ pollution with industrial waste derivatives Humin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121236. [PMID: 36758929 DOI: 10.1016/j.envpol.2023.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Metal pollution caused by industrial waste accumulation is a long-term and far-reaching problem. Humin (HM), as a highly condensed organic component insoluble in alkaline or water solution, is often discarded as humic acid industrial waste. However, the abundant active functional groups in HM reported by some researches make it possible for HM to remove metals. In this study, a waste reuse strategy was proposed to reduce the pressure of industrial metal pollution on the environment. HM was obtained from lignite waste residue. Scanning electron microscopy, energy spectrum and Fourier infrared spectroscopy, combined with the adsorption models were employed to reveal the mechanism of HM adsorption. The results showed that HM had multiple adsorption mechanism and high biological stability. The adsorption capacity of HM to Zn2+ and Pb2+ were 194.88 mg/g and 289.59 mg/g respectively. HM adsorbed Zn2+ mainly by physical multilayer adsorption. And the adsorption of Pb2+ by HM was mainly a monolayer chemical reaction, which depended on its active functional groups and the exchange of valence electrons. Notably, HM could simultaneously remove Pb2+ and Zn2+ and almost did not affect its original adsorption capacity to single ions. These results will provide a new strategy for the treatment of metal pollution in the future and alleviate the pressure of multiple metal pollution of the environment.
Collapse
Affiliation(s)
- Ruju Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Huiying Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
3
|
A Review on Polyacrylonitrile as an Effective and Economic Constituent of Adsorbents for Wastewater Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248689. [PMID: 36557823 PMCID: PMC9784622 DOI: 10.3390/molecules27248689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Water gets polluted due to the dumping of untreated industrial waste into bodies of water, particularly those containing heavy metals and dyes. Industrial water contains both inorganic and organic wastes. Numerous adsorbents that are inexpensive and easily available can be used to address the issue of water deterioration. This review report is focused on polyacrylonitrile as an efficient constituent of adsorbents to extract toxic ions and dyes. It discusses the various formulations of polyacrylonitrile, such as ion exchange resins, chelating resins, fibers, membranes, and hydrogels, synthesized through different polymerization methods, such as suspension polymerization, electrospinning, grafting, redox, and emulsion polymerization. Moreover, regeneration of adsorbent and heavy metal ions makes the adsorption process more cost-effective and efficient. The literature reporting successful regeneration of the adsorbent is included. The factors affecting the performance and outcomes of the adsorption process are also discussed.
Collapse
|
4
|
Wang H, Han Z, Liu Y, Zheng M, Liu Z, Wang W, Fan Y, Han D, Niu L. Recyclable Composite Membrane of Polydopamine and Graphene Oxide-Modified Polyacrylonitrile for Organic Dye Molecule and Heavy Metal Ion Removal. MEMBRANES 2022; 12:938. [PMID: 36295697 PMCID: PMC9609451 DOI: 10.3390/membranes12100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Developing efficient and recyclable membranes for water contaminant removal still remains a challenge in terms of practical applications. Herein, a recyclable membrane constituted of polyacrylonitrile-graphene and oxide-polydopamine was fabricated and demonstrated efficient adsorption capacities with respect to heavy metal ions (62.9 mg g-1 of Cu2+ ion, CuSO4 50 mg L-1) and organic dye molecules (306.7 mg g-1 of methylene blue and 339.6 mg g-1 of eriochrome black T, MB/EBT 50 mg L-1). The polyacrylonitrile fibers provide the skeleton of the membrane, while the graphene oxide and polydopamine endow the membrane with hydrophilicity, which is favorable for the adsorption of pollutants in water. Benefitting from the protonation and deprotonation effects of graphene oxide and polydopamine, the obtained membrane demonstrated promotion of the selective adsorption or desorption of pollutant molecules. This guarantees that the adsorbed pollutant molecules can be desorbed promptly from the membrane through simple pH adjustment, ensuring the reusability of the membrane. After ten adsorption-desorption cycles, the membrane could still maintain a desirable adsorption capacity. In addition, compared with other, similar membranes reported, this composite membrane displays the highest mechanical stability. This work puts forward an alternative strategy for recyclable membrane design and expects to promote the utilization of membrane techniques in practical wastewater treatment.
Collapse
Affiliation(s)
- Haoyu Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiyun Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanjuan Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Maojin Zheng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhenbang Liu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yingying Fan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials & Devices, School of Chemistry and Chemical Engineering, Analytical and Testing Center, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Efficacy of Various Types of Berries Extract for the Synthesis of ZnO Nanocomposites and Exploring Their Antimicrobial Potential for Use in Herbal Medicines. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9914173. [PMID: 36017391 PMCID: PMC9398764 DOI: 10.1155/2022/9914173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022]
Abstract
Nanoscience has developed various greener approaches as an alternate method for the synthesis of nanoparticles and nanocomposites. The present study discusses the efficacy of berries extract for the synthesis of ZnO nanocomposites. Characterization of synthesized nanocomposite were done by SEM, UV/VIS spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and XRD techniques. The crystalline nature of the synthesized nanoparticles was verified by XRD pattern in the range of 10-80 nm. The UV absorption peak of Elaeagnus umbellata (ZnO-EU) nanocomposite at 340 nm, Rubus idaeus (ZnO-Ri) nanocomposite at 360 nm, and Rubus fruticosus (ZnO-Rf) nanocomposite at 360 nm was observed. The nanocomposites were analyzed for their antimicrobial activity and found to be effective against three phytopathogens. The antimicrobial activity of ZnO nanocomposites showed good results against Escherichia coli (341), Staphylococcus aureus (345B), and Pseudomonas aeruginosa (5994 NLF). This study presents a simple and inexpensive approach for synthesizing zinc oxide nanocomposites with effective antibacterial activity.
Collapse
|
6
|
Synthesis of a novel EDTA-functionalized nanocomposite of Fe3O4-Eucalyptus camaldulensis green carbon fiber for selective separation of lead ions from synthetic wastewater: isotherm and kinetic studies. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Electrospun Polyacrylonitrile/Lignin/Poly(Ethylene Glycol)-Based Porous Activated Carbon Nanofiber for Removal of Nickel(II) Ion from Aqueous Solution. Polymers (Basel) 2021; 13:polym13203590. [PMID: 34685349 PMCID: PMC8537280 DOI: 10.3390/polym13203590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The issue of heavy metal contamination has caused a great deal of concern among water quality experts today, as it contributes to water pollution. Activated carbon nanofibers (ACNFs) showed a significant ability in removing heavy metals from the wastewater. In this study, polyacrylonitrile (PAN) was blended and electrospun with an abundant and inexpensive biopolymer, lignin and a water soluble polymer, poly(ethylene glycol) (PEG), by using an electrospinning technique to form nanofibers. The electrospun nanofibers were then investigated as a precursor for the production of porous ACNFs to study the removal of nickel(II) ions by adsorption technique. PEG was added to act as a porogen and to create the porous structure of carbon nanofibers (CNFs). CNFs were prepared by thermal treatment of the electrospun nanofibers and followed by activation of CNFs by thermal and acid treatment on CNFs. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectral analysis of the ACNFs showed a strong absorption peak of the C-O functional group, indicating the increase in the oxygenated compound. Field emission scanning electron microscopy (FESEM) images concluded that the ACNFs have more porous and compact fibers with a smaller fiber diameter of 263 ± 11 nm, while the CNFs are less compact and have slightly larger fiber diameter of 323 ± 6 nm. The adsorption study showed that the ACNFs possessed a much higher adsorption capacity of 18.09 mg/g compared with the CNFs, which the amount adsorbed was achieved only at 2.7 mg/g. The optimum adsorption conditions that gave the highest percentage of 60% for nickel(II) ions removal were 50 mg of adsorbent dosage, 100 ppm of nickel(II) solution, pH 3, and a contact time of 60 min. The study demonstrated that the fabrication of ACNFs from PAN/lignin/PEG electrospun nanofibers have potential as adsorbents for the removal of heavy metal contaminants.
Collapse
|
8
|
Pala SL, Kebede Biftu W, Suneetha M, Ravindhranath K. Simultaneous removal of lead and cadmium ions from simulant and industrial waste water: using Calophyllum Inophyllum plant materials as sorbents. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:637-651. [PMID: 34410178 DOI: 10.1080/15226514.2021.1961121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The merit of this investigation is that simple and effective bio-sorbents based on Calophyllum inophyllum plant materials with high sorption capacities, are developed for the simultaneous removal of the toxic Pb2+ and Cd2+ at neutral or nearly neutral pHs. These sorbents are successful in water remediation of Pb2+ and Cd2+ ions from real effluents from industries. These findings have great significance as the identified bio-sorbents are simple, effective and renewable in extracting highly toxic lead and cadmium ions from the effluents from industries or polluted water.
Collapse
Affiliation(s)
- Sneha Latha Pala
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, India
| | - Wondwosen Kebede Biftu
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, India
- Ethiopian Radiation Protection Authority, Addis Ababa, Ethiopia
| | - M Suneetha
- Department of Chemistry, RGUKT-Srikakulam, Srikakulam, India
| | - Kunta Ravindhranath
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, India
| |
Collapse
|
9
|
Activated Carbon from the Peelings of Cassava Tubers (Manihot esculenta) for the Removal of Nickel(II) Ions from Aqueous Solution. J CHEM-NY 2021. [DOI: 10.1155/2021/5545110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Activated carbons were obtained from the peelings of cassava tubers (Manihot esculenta) by chemical activation using potassium hydroxide and phosphoric acid at impregnation ratios of 2 : 1 and 1 : 1, respectively, at 400°C for batch adsorption of nickel(II) ions from aqueous solution. Characterization of activated carbon samples was achieved via proximate analysis, Fourier-transform infrared spectroscopy, pH of zero-point charge, Boehm method, elemental analysis, scanning electron microscopy, and iodine number determination for each adsorbent. The effects of pH, contact time, initial adsorbate concentration, and adsorbent dose were studied at 27°C in order to optimize the conditions for maximum adsorption. Equilibrium was attained after 40 minutes of contact of both materials with activating solutions. Maximum adsorption capacities of 41.15 mg/g for ACPH, 47.39 mg/g for ACPA, 35.34 mg/g for NIC, and 34.48 mg/g for RM, respectively, were obtained at pH = 4. Equilibrium data showed that the Langmuir model best described the adsorption process with R2 closed to unity, indicative of monolayer adsorption on a homogeneous surface. Kinetic studies showed that the adsorption process is controlled by the pseudo-second-order model. These results show that activated carbon prepared from cassava peelings constitutes an effective low-cost material for the treatment of wastewater containing nickel(II) ions.
Collapse
|
10
|
Synthesis of Manganese Ferrite/Graphene Oxide Magnetic Nanocomposite for Pollutants Removal from Water. Processes (Basel) 2021. [DOI: 10.3390/pr9040589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
These days, environmental pollution, notably water pollution, has increasingly caused severe human health problems. The major water pollutants are heavy metals. MnFe2O4/GO nanocomposite was prepared in the current work via in situ method and tested to remove lead ion Pb2+ and neutral red (NR) dye from water. The prepared nanocomposite was characterized using different techniques, including X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectra, and vibrating sample magnetometer. The prepared nanocomposite showed high adsorption capacity toward Pb2+ and NR dye removal according to Langmuir fitting indicating the monolayer homogeneous adsorption of pollutants over the adsorbent surface and can be separated easily with an external magnet. The effect of different factors, including contact time, pH, initial concentration, and adsorbent dose on the adsorption, were also studied. The increased concentration of pollutants led to increased adsorption capacity from 63 to 625 mg/g for Pb2+ ions and from 20 to 90 mg/g for NR dye. The increased adsorbent dose led to increased removal efficiency from 39% to 98.8% and from 63% to 94% for Pb2+ and NR dye, respectively. The optimum pH for the adsorption of both pollutants was found to be 6.0. The reusability of MnFe2O4/GO nanocomposite was studied for up to five cycles. The nanocomposite can keep its efficiency even after the studied cycles. So, the prepared magnetic nanocomposite is a promising material for water treatment.
Collapse
|