1
|
Wu X, Zhang X, Wang H, Xie Z. Smart utilisation of reverse solute diffusion in forward osmosis for water treatment: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162430. [PMID: 36842573 DOI: 10.1016/j.scitotenv.2023.162430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Forward osmosis (FO) has been widely studied as a promising technology in wastewater treatment, but undesirable reverse solute diffusion (RSD) is inevitable in the FO process. The RSD is generally regarded as a negative factor for the FO process, resulting in the loss of draw solutes and reduced FO efficiency. Conventional strategies to address RSD focus on reducing the amount of reverse draw solutes by fabricating high selective FO membranes and/or selecting the draw solute with low diffusion. However, since RSD is inevitable, doubts have been raised about the strategies to cope with the already occurring reverse draw solutes in the feed solution, and the feasibility to positively utilise the RSD phenomenon to improve the FO process. Herein, we review the state-of-the-art applications of RSD and their benefits such as improving selectivity and maintaining the stability of the feed solution for both independent FO processes and FO integrated processes. We also provide an outlook and discuss important considerations, including membrane fouling, membrane development and draw/feed solution properties, in RSD utilisation for water and wastewater treatment.
Collapse
Affiliation(s)
- Xing Wu
- CSIRO Manufacturing, Clayton South, Victoria 3169, Australia
| | - Xiwang Zhang
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Clayton South, Victoria 3169, Australia.
| |
Collapse
|
2
|
Membrane Water Treatment for Drinking Water Production from an Industrial Effluent Used in the Manufacturing of Food Additives. MEMBRANES 2022; 12:membranes12080742. [PMID: 36005657 PMCID: PMC9412253 DOI: 10.3390/membranes12080742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
An integrated membrane process for treatment of effluents from food additive manufacturing was designed and evaluated on a laboratory scale. The principal focus was water recovery with the possibility of its reuse as potable water. The industrial effluent presented high content of dyes and salts. It was red in color and presented brine characteristics. The whole effluent was fed into the integrated process in continuous flow. The steps of the process are as follows: sedimentation (S), adsorption by activated carbon (AC), ion exchange using resins (IEXR), and reverse osmosis (RO) (S–AC–IEXR–RO). The effect of previous operations was evaluated by stress-rupture curves in packaged columns of AC and IEXR, membrane flux, and fouling dominance in RO. Fouling was evaluated by way of the Silt Density Index and membrane resistance examination during effluent treatment. The integrated membrane process provided reclaimed water with sufficiently high standards of quality for reuse as potable water. AC showed a high efficiency for color elimination, reaching its rupture point at 20 h and after 5L of effluent treatment. IEXR showed capacity for salt removal, providing 2.2–2.5 L of effluent treatment, reaching its rupture point at 11–15 h. As a result of these previous operations and operating conditions, the fouling of the RO membrane was alleviated, displaying high flux of water: 20–18 L/h/m2 and maintaining reversible fouling dominance at a feed flow rate of 0.5–0.7 L/h. The characteristics of the reclaimed water showed drinking water standards
Collapse
|
3
|
Preparation and characterization of novel thin film composite forward osmosis membrane with halloysite nanotube interlayer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Biogas Production from Concentrated Municipal Sewage by Forward Osmosis, Micro and Ultrafiltration. SUSTAINABILITY 2022. [DOI: 10.3390/su14052629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Direct application of anaerobic digestion to sewage treatment is normally only possible under tropical weather conditions. This is the result of its diluted nature and temperatures far from those suitable for anaerobic conversion of organic matter. Then, direct application of anaerobic treatment to sewage would require changing temperature, concentration, or both. Modification of sewage temperature would require much more energy than contained in the organic matter. Then, the feasible alternative seems to be the application of a pre-concentration step that may be accomplished by membrane filtration. This research studied the pre-concentration of municipal sewage as a potential strategy to enable the direct anaerobic conversion of organic matter. Three different membrane processes were tested: microfiltration, ultrafiltration and forward osmosis. The methane potential of the concentrates was determined. Results show that biogas production from the FO-concentrate was higher, most likely because of a higher rejection. However, salt increase due to rejection and reverse flux of ions from the draw solution may affect anaerobic digestion performance.
Collapse
|
5
|
Valdés H, Saavedra A, Flores M, Vera-Puerto I, Aviña H, Belmonte M. Reverse Osmosis Concentrate: Physicochemical Characteristics, Environmental Impact, and Technologies. MEMBRANES 2021; 11:753. [PMID: 34677518 PMCID: PMC8541667 DOI: 10.3390/membranes11100753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
This study's aim is to generate a complete profile of reverse osmosis concentrate (ROC), including physicochemical characteristics, environmental impact, and technologies for ROC treatment, alongside element recovery with potential valorization. A systematic literature review was used to compile and analyze scientific information about ROC, and systematic identification and evaluation of the data/evidence in the articles were conducted using the methodological principles of grounded data theory. The literature analysis revealed that two actions are imperative: (1) countries should impose strict regulations to avoid the contamination of receiving water bodies and (2) desalination plants should apply circular economies. Currently, synergizing conventional and emerging technologies is the most efficient method to mitigate the environmental impact of desalination processes. However, constructed wetlands are an emerging technology that promise to be a viable multi-benefit solution, as they can provide simultaneous treatment of nutrients, metals, and trace organic contaminants at a relatively low cost, and are socially accepted; therefore, they are a sustainable solution.
Collapse
Affiliation(s)
- Hugo Valdés
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule (UCM), Av. San Miguel 3605, Talca 3460000, Chile
| | - Aldo Saavedra
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile
| | - Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Avenida Carlos Schorr 255, Talca 3473620, Chile;
| | - Ismael Vera-Puerto
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3460000, Chile;
| | - Hector Aviña
- iiDEA Group, Department of Industrial and Environmental Process Engineering, Engineering Institute, National Autonomous University of Mexico (UNAM), Ciudad de México 04510, Mexico;
| | - Marisol Belmonte
- Laboratorio de Biotecnología, Medio Ambiente e Ingeniería (LABMAI), Facultad de Ingeniería, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| |
Collapse
|
6
|
Li Z, Wu C, Huang J, Zhou R, Jin Y. Membrane Fouling Behavior of Forward Osmosis for Fruit Juice Concentration. MEMBRANES 2021; 11:membranes11080611. [PMID: 34436374 PMCID: PMC8398857 DOI: 10.3390/membranes11080611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Forward osmosis (FO) technology has a broad application prospect in the field of liquid food concentration because of the complete retention of flavor components and bioactive substances. Membrane fouling is the main obstacle affecting the FO performance and concentration efficiency. This work systematically investigated the membrane fouling behavior of the FO process for fruit juice concentration elucidated by the models of resistance-in-series, xDLVO theory and FTIR analysis. The results show that the AL-FS mode was more suitable for concentrating orange juice. Increasing the cross-flow rate and pretreatment of feed solutions can effectively improve the water flux and reduce the fouling resistance. The ATR-FTIR analysis revealed that the fouling layer of orange juice was mainly composed of proteins and polysaccharides, and the pretreatment of microfiltration can greatly reduce the content of the major foulant. There was an attractive interaction between the FO membrane and orange juice foulants; by eliminating those foulants, the microfiltration pretreatment then weakened such an attractive interaction and effectively prevented the fouling layer from growing, leading to a lower process resistance and, finally, resulting in a great improvement of concentration efficiency.
Collapse
Affiliation(s)
- Zihe Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.L.); (C.W.); (J.H.); (R.Z.)
- Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.L.); (C.W.); (J.H.); (R.Z.)
- Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.L.); (C.W.); (J.H.); (R.Z.)
- Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.L.); (C.W.); (J.H.); (R.Z.)
- Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.L.); (C.W.); (J.H.); (R.Z.)
- Key Laboratory for Leather and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|