1
|
Li J, Zhao Y, Shen C. Recent progress on glucose dehydrogenase: multifaceted applications in industrial biocatalysis, cofactor regeneration, glucose sensors, and biofuel cells. Int J Biol Macromol 2025:143842. [PMID: 40319965 DOI: 10.1016/j.ijbiomac.2025.143842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Glucose dehydrogenase (GDH) is an enzyme that catalyzes the oxidation of glucose. Through the oxidation process, glucose is converted into gluconic acid, releasing electrons in the process, which plays a crucial role in various biological and industrial applications. GDH is widely applied in molecular biology, medicine, and industry. Currently, glucose dehydrogenase is a core component in glucose test strips, commonly used in blood glucose monitoring. Additionally, due to its catalytic properties, GDH is also employed in industrial biocatalysis, coenzyme regeneration, synthetic biology, and biofuel cells. Despite being studied for many years and having achieved industrial applications in glucose biosensors, advanced research and development on glucose dehydrogenase still continues. In recent years, more attention has been focused on improving the enzyme's performance through molecular engineering or novel immobilization techniques, as well as expanding its application fields. These efforts aim to enhance the enzyme's contribution to global challenges, such as human health diagnostics, industrial biocatalysis upgrades, and the development of bioenergy. This review summarizes the recent advancements in glucose dehydrogenase research, focusing on enzyme molecular engineering and performance enhancement, novel immobilization strategies, and the latest applications in biosensors, biocatalysis, and biofuel cells.
Collapse
Affiliation(s)
- Jiayao Li
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Yawen Zhao
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China
| | - Chen Shen
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, China; State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science & Technology, Shijiazhuang, China.
| |
Collapse
|
2
|
Damala P, Tiuftiakov NY, Bakker E. Avoiding Potential Pitfalls in Designing Wired Glucose Biosensors. ACS Sens 2024; 9:2-8. [PMID: 38146872 DOI: 10.1021/acssensors.3c01960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Glucose sensing has been studied for more than half a century, leading many to believe that further progress comes mainly from engineering efforts. Our society requires robust, reliable, compact, and easy-to-use sensing solutions for decentralized applications such as wearables, and engineering solutions are essential. However, true progress is only possible by understanding and improving the underlying working principles and fundamental limitations. This Perspective discusses the delicate relationship between the observed current and glucose concentration when using wired enzyme biosensors. Some of the potential pitfalls often encountered in the recent literature are discussed. These include the need to suppress the influence of enzyme turnover kinetics on the sensor signal and the undesired faradaic charging of the electron transfer mediator that gives a continuously decaying baseline signal. These fundamental issues must be carefully evaluated and resolved for the realization of continuously operating enzyme biosensor systems.
Collapse
Affiliation(s)
- Polyxeni Damala
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Nikolai Yu Tiuftiakov
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
3
|
Alatzoglou C, Tzianni EI, Patila M, Trachioti MG, Prodromidis MI, Stamatis H. Structure-Function Studies of Glucose Oxidase in the Presence of Carbon Nanotubes and Bio-Graphene for the Development of Electrochemical Glucose Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:85. [PMID: 38202540 PMCID: PMC10780548 DOI: 10.3390/nano14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
In this work, we investigated the effect of multi-walled carbon nanotubes (MWCNTs) and bio-graphene (bG) on the structure and activity of glucose oxidase (GOx), as well as on the performance of the respective electrochemical glucose biosensors. Various spectroscopic techniques were applied to evaluate conformational changes in GOx molecules induced by the presence of MWCNTs and bG. The results showed that MWCNTs induced changes in the flavin adenine dinucleotide (FAD) prosthetic group of GOx, and the tryptophan residues were exposed to a more hydrophobic environment. Moreover, MWCNTs caused protein unfolding and conversion of α-helix to β-sheet structure, whereas bG did not affect the secondary and tertiary structure of GOx. The effect of the structural changes was mirrored by a decrease in the activity of GOx (7%) in the presence of MWCNTs, whereas the enzyme preserved its activity in the presence of bG. The beneficial properties of bG over MWCNTs on GOx activity were further supported by electrochemical data at two glucose biosensors based on GOx entrapped in chitosan gel in the presence of bG or MWCNTs. bG-based biosensors exhibited a 1.33-fold increased sensitivity and improved reproducibility for determining glucose over the sweat-relevant concentration range of glucose.
Collapse
Affiliation(s)
- Christina Alatzoglou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| | - Eleni I. Tzianni
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| | - Maria G. Trachioti
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Mamas I. Prodromidis
- Laboratory of Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.I.T.); (M.G.T.)
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (C.A.); (M.P.)
| |
Collapse
|
4
|
Tanniche I, Behkam B. Engineered live bacteria as disease detection and diagnosis tools. J Biol Eng 2023; 17:65. [PMID: 37875910 PMCID: PMC10598922 DOI: 10.1186/s13036-023-00379-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Sensitive and minimally invasive medical diagnostics are essential to the early detection of diseases, monitoring their progression and response to treatment. Engineered bacteria as live sensors are being developed as a new class of biosensors for sensitive, robust, noninvasive, and in situ detection of disease onset at low cost. Akin to microrobotic systems, a combination of simple genetic rules, basic logic gates, and complex synthetic bioengineering principles are used to program bacterial vectors as living machines for detecting biomarkers of diseases, some of which cannot be detected with other sensing technologies. Bacterial whole-cell biosensors (BWCBs) can have wide-ranging functions from detection only, to detection and recording, to closed-loop detection-regulated treatment. In this review article, we first summarize the unique benefits of bacteria as living sensors. We then describe the different bacteria-based diagnosis approaches and provide examples of diagnosing various diseases and disorders. We also discuss the use of bacteria as imaging vectors for disease detection and image-guided surgery. We conclude by highlighting current challenges and opportunities for further exploration toward clinical translation of these bacteria-based systems.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineered and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Poltavets V, Krawczyk M, Maslak G, Abraimova O, Jönsson-Niedziółka M. Formation of MnO 2-coated ITO electrodes with high catalytic activity for enzymatic glucose detection. Dalton Trans 2023; 52:13769-13780. [PMID: 37721014 DOI: 10.1039/d3dt02199h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
We present the formation of a cheap and environmentally friendly working electrode material for glucose biosensors with good catalytic properties. The classic electrode in such devices consists of a conductive material modified with the enzyme glucose oxidase. The working principle is the electrochemical detection of hydrogen peroxide as a product of the enzymatic transformation of glucose. As a base material, we offer manganese dioxide; it is a natural highly selective catalyst for the decomposition of H2O2 and is electrochemically deposited onto the surface of ITO. We approached the formation of MnO2 films systematically. By changing parameters such as the deposition method, pH of the electrolyte, and the drying temperature of the precipitate, a series of electrodes were formed. These electrodes were characterized by SEM, electrochemical impedance spectroscopy, and XPS and their electrocatalytic activity was studied. Significant differences in the sensitivity of the electrodes were detected. The manganese dioxide film with the best catalytic characteristics is formed in the electrolyte with pH 1 by cyclic voltammetry and then drying at 60 °C. The surface of the electrode was then modified with a solution of GOx enzyme with a concentration of 2 mg ml-1 (100-250 units per mg solid). The sensitivity of such an electrode is 117.8 μA mmol-1 cm-2. The range of determined concentrations of glucose is from 0.1 mM to 3 mM. The sensitivity is comparable to that of electrodes based on expensive materials such as graphene and noble metals.
Collapse
Affiliation(s)
- Veronika Poltavets
- Charge Transfer in Hydrodynamic Systems group, Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka street 44/52, 01-224 Warsaw, Poland.
| | - Mirosław Krawczyk
- Charge Transfer in Hydrodynamic Systems group, Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka street 44/52, 01-224 Warsaw, Poland.
| | - Ganna Maslak
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, ul. Volodymyr Vernadsky 9, 49044 Dnipro, Ukraine.
| | - Olga Abraimova
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, ul. Volodymyr Vernadsky 9, 49044 Dnipro, Ukraine.
| | - Martin Jönsson-Niedziółka
- Charge Transfer in Hydrodynamic Systems group, Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka street 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
6
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
7
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
8
|
Rocha JF, Hasimoto LH, Santhiago M. Recent progress and future perspectives of polydopamine nanofilms toward functional electrochemical sensors. Anal Bioanal Chem 2023; 415:3799-3816. [PMID: 36645457 PMCID: PMC9841946 DOI: 10.1007/s00216-023-04522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Jaqueline F Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Leonardo H Hasimoto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| |
Collapse
|
9
|
Sun Y, Xue W, Zhao J, Bao Q, Zhang K, Liu Y, Li H. Direct Electrochemistry of Glucose Dehydrogenase-Functionalized Polymers on a Modified Glassy Carbon Electrode and Its Molecular Recognition of Glucose. Int J Mol Sci 2023; 24:ijms24076152. [PMID: 37047124 PMCID: PMC10093998 DOI: 10.3390/ijms24076152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
A glucose biosensor was layer-by-layer assembled on a modified glassy carbon electrode (GCE) from a nanocomposite of NAD(P)+-dependent glucose dehydrogenase, aminated polyethylene glycol (mPEG), carboxylic acid-functionalized multi-wall carbon nanotubes (fMWCNTs), and ionic liquid (IL) composite functional polymers. The electrochemical electrode was denoted as NF/IL/GDH/mPEG-fMWCNTs/GCE. The composite polymer membranes were characterized by cyclic voltammetry, ultraviolet-visible spectrophotometry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. The cyclic voltammogram of the modified electrode had a pair of well-defined quasi-reversible redox peaks with a formal potential of -61 mV (vs. Ag/AgCl) at a scan rate of 0.05 V s-1. The heterogeneous electron transfer constant (ks) of GDH on the composite functional polymer-modified GCE was 6.5 s-1. The biosensor could sensitively recognize and detect glucose linearly from 0.8 to 100 µM with a detection limit down to 0.46 μM (S/N = 3) and a sensitivity of 29.1 nA μM-1. The apparent Michaelis-Menten constant (Kmapp) of the modified electrode was 0.21 mM. The constructed electrochemical sensor was compared with the high-performance liquid chromatography method for the determination of glucose in commercially available glucose injections. The results demonstrated that the sensor was highly accurate and could be used for the rapid and quantitative determination of glucose concentration.
Collapse
Affiliation(s)
- Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Weishi Xue
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Jianfeng Zhao
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Qianqian Bao
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Kailiang Zhang
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yupeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Hua Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| |
Collapse
|
10
|
Phasuksom K, Sirivat A. Chronoampermetric detection of enzymatic glucose sensor based on doped polyindole/MWCNT composites modified onto screen-printed carbon electrode as portable sensing device for diabetes. RSC Adv 2022; 12:28505-28518. [PMID: 36320500 PMCID: PMC9535471 DOI: 10.1039/d2ra04947c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
Doped-polyindole (dPIn) mixed with multi-walled carbon nanotubes (MWCNTs) were coated on a screen-printed electrode to improve the electroactive surface area and current response of the chronoamperometric enzymatic glucose sensor. Glucose oxidase mixed with chitosan (CHI-GOx) was immobilized on the electrode. (3-Aminopropyl) triethoxysilane (APTES) was used as a linker between the CHI-GOx and the dPIn. The current response of the glucose sensor increased with increasing glucose concentration according to a power law relation. The sensitivity of the CHI-GOx/APTES/dPIn was 55.7 μA mM−1 cm−2 with an LOD (limit of detection) of 0.01 mM, where the detectable glucose concentration range was 0.01–50 mM. The sensitivity of the CHI-GOx/APTES/1.5%MWCNT-dPIn was 182.9 μA mM−1 cm−2 with an LOD of 0.01 mM, where the detectable glucose concentration range was 0.01–100 mM. The detectable concentration ranges of glucose well cover the glucose concentrations in urine and blood. The fabricated enzymatic glucose sensors showed high stability during a storage period of four weeks and high selectivity relative to other interferences. Moreover, the sensor was successfully demonstrated as a continuous or step-wise glucose monitoring device. The preparation method employed here was facile and suitable for large quantity production. The glucose sensor fabricated here, consisting of the three-electrode cell of SPCE, were simple to use for glucose detection. Thus, it is promising to use as a prototype for real glucose monitoring for diabetic patients in the future. The enzymatic glucose sensor based on a dPIn and dPIn/MWCNT modified screen-printed carbon electrode with a facile method possessed good glucose response. The detectable glucose concentration range covers well the glucose concentrations in urine and blood.![]()
Collapse
Affiliation(s)
- Katesara Phasuksom
- Conductive and Electroactive Polymers Research Unit, Petroleum and Petrochemical College, Chulalongkorn University254 Chula 12 Phayathai Rd. PathumwanBangkok10330Thailand
| | - Anuvat Sirivat
- Conductive and Electroactive Polymers Research Unit, Petroleum and Petrochemical College, Chulalongkorn University254 Chula 12 Phayathai Rd. PathumwanBangkok10330Thailand
| |
Collapse
|
11
|
The development of NAD+-dependent dehydrogenase screen-printed biosensor based on enzyme and nanoporous gold co-catalytic strategy. Biosens Bioelectron 2022; 211:114376. [DOI: 10.1016/j.bios.2022.114376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/20/2023]
|
12
|
Mercadante A, Campisciano V, Morena A, Valentino L, La Parola V, Aprile C, Gruttadauria M, Giacalone F. Catechol‐Functionalized Carbon Nanotubes as Support for Pd Nanoparticles: a Recyclable System for the Heck Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alessandro Mercadante
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) ITALY
| | - Vincenzo Campisciano
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) ITALY
| | - Anthony Morena
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) ITALY
| | - Laura Valentino
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Palermo ITALY
| | - Valeria La Parola
- ISMN CNR: Istituto per lo studio dei materiali nanostrutturati Consiglio Nazionale delle Ricerche Institute for the Study of Nanostructured Materials ITALY
| | - Carmela Aprile
- Université de Namur: Universite de Namur Department of Chemistry ITALY
| | - Michelangelo Gruttadauria
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies ITALY
| | - Francesco Giacalone
- University of Palermo Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze s/n, Ed. 17 I-90128 Palermo ITALY
| |
Collapse
|
13
|
Electrochemical Biosensor Based on Chitosan- and Thioctic-Acid-Modified Nanoporous Gold Co-Immobilization Enzyme for Glycerol Determination. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An electrochemical biosensor based on chitosan- and thioctic-acid-modified nanoporous gold (NPG) co-immobilization glycerol kinase (GK) and glycerol-3-phosphate oxidase (GPO) was constructed for glycerol determination in wine. The NPG, with the properties of porous microstructure, large specific surface area, and high conductivity, was beneficial for protecting the enzyme from inactivation and denaturation and enhancing electron transfer in the modified electrode. The co-immobilization of the enzyme by chitosan-embedding and thioctic-acid-modified NPG covalent bonding was beneficial for improving the catalytic performance and stability of the enzyme-modified electrode. Ferrocene methanol (Fm) was used as a redox mediator to accelerate the electron transfer rate of the enzyme-modified electrode. The fabricated biosensor exhibited a wide determination range of 0.1–5 mM, low determination limit of 77.08 μM, and high sensitivity of 9.17 μA mM−1. Furthermore, it possessed good selectivity, repeatability, and stability, and could be used for the determination of glycerol in real wine samples. This work provides a simple and novel method for the construction of biosensors, which may be helpful to the application of enzymatic biosensors in different determination scenarios.
Collapse
|
14
|
Lin MH, Gupta S, Chang C, Lee CY, Tai NH. Carbon nanotubes/polyethylenimine/glucose oxidase as a non-invasive electrochemical biosensor performs high sensitivity for detecting glucose in saliva. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Ji J, Kim S, Chung Y, Kwon Y. Polydopamine mediator for glucose oxidation reaction and its use for membraneless enzymatic biofuel cells. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|