1
|
Gao P, Masato D. The Effects of Nucleating Agents and Processing on the Crystallization and Mechanical Properties of Polylactic Acid: A Review. MICROMACHINES 2024; 15:776. [PMID: 38930746 PMCID: PMC11206032 DOI: 10.3390/mi15060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Polylactic acid (PLA) is a biobased, biodegradable, non-toxic polymer widely considered for replacing traditional petroleum-based polymer materials. Being a semi-crystalline material, PLA has great potential in many fields, such as medical implants, drug delivery systems, etc. However, the slow crystallization rate of PLA limited the application and efficient fabrication of highly crystallized PLA products. This review paper investigated and summarized the influence of formulation, compounding, and processing on PLA's crystallization behaviors and mechanical performances. The paper reviewed the literature from different studies regarding the impact of these factors on critical crystallization parameters, such as the degree of crystallinity, crystallization rate, crystalline morphology, and mechanical properties, such as tensile strength, modulus, elongation, and impact resistance. Understanding the impact of the factors on crystallization and mechanical properties is critical for PLA processing technology innovations to meet the requirements of various applications of PLA.
Collapse
Affiliation(s)
- Peng Gao
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 18015, USA
- Polymer Materials Engineering, Department of Engineering and Design, Western Washington University, Bellingham, WA 98225, USA
| | - Davide Masato
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 18015, USA
| |
Collapse
|
2
|
Zhang Z, Huo S, Yu L, Ye G, Wang C, Zhang Q, Liu Z. A generalizable reactive blending strategy to construct flame-retardant, mechanically-strong and toughened poly(L-lactic acid) bioplastics. Int J Biol Macromol 2024; 265:130806. [PMID: 38484810 DOI: 10.1016/j.ijbiomac.2024.130806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Poly(L-lactic acid) (PLA) is an environmentally-friendly bioplastic with high mechanical strength, but suffers from inherent flammability and poor toughness. Many tougheners have been reported for PLA, but their synthesis usually involves organic solvents, and they tend to dramatically reduce the mechanical strength and cannot settle the flammability matter. Herein, we develop strong, tough, and flame-retardant PLA composites by reactive blending PLA, 6-((double (2-hydroxyethyl) amino) methyl) dibenzo [c, e] [1,2] oxyphosphate acid 6-oxide (DHDP) and diphenylmethane diisocyanate (MDI) and define it PLA/xGH, where x indicates that the molar ratio of -NCO group in MDI to -OH group in PLA and DHDP is 1.0x: 1. This fabrication requires no solvents. PLA/2GH with a -NCO/-OH molar ratio of 1.02: 1 maintains high tensile strength of 63.0 MPa and achieves a 23.4 % increase in impact strength compared to PLA due to the incorporation of rigid polyurethane chain segment. The vertical combustion (UL-94) classification and limiting oxygen index (LOI) of PLA/2GH reaches V-0 and 29.8 %, respectively, because DHDP and MDI function in gas and condensed phases. This study displays a generalizable strategy to create flame-retardant bioplastics with great mechanical performances by the in-situ formation of P/N-containing polyurethane segment within PLA.
Collapse
Affiliation(s)
- Zimeng Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Siqi Huo
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia; School of Engineering, University of Southern Queensland, Springfield Central 4300, Australia.
| | - Lingfeng Yu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Guofeng Ye
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Cheng Wang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Zhang
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
3
|
Zena Y, Tesfaye M, Tumssa Z, Periyasamy S. Effects of modified elastin-collagen matrix on the thermal and mechanical properties of Poly (lactic acid). Heliyon 2023; 9:e19598. [PMID: 37809474 PMCID: PMC10558821 DOI: 10.1016/j.heliyon.2023.e19598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Poly (lactic acid) (PLA) has distinctive characteristics, including biodegradability, biocompatibility, thermal process ability, high transparency and good film-forming ability. However, PLA has some poor properties that limit its wide applicability. These properties include a low crystallization rate, poor thermal stability, and high brittleness. The main objective of this research was to investigate the effect of a modified elastin-collagen (m-ELA-COLL) matrix on the properties of PLA. The ELA-COLL matrix was extracted from broiler skin waste and modified by grafting using lactic acid monomer to facilitate compatibility with PLA. The extracted and modified ELA-COLL matrix was investigated using FTIR, and α-helix and β-sheet structures were confirmed in both cases (pre- and post-modifications). Modified elastin-collagen dispersed Poly (lactic acid) (PLA-m-ELA-COLL) blend films were prepared using the solution casting method and characterized using DSC and UTM. The effect of m-ELA-COLL as a nucleating agent resulted in the degree of crystallinity improvement of 58.8% with 10 wt% m-ELA/COLL loading, and the elongation at break was improved by 161.3% for PLA-40%-m-ELA-COLL with a tensile strength of 33.75 MPa. The results obtained revealed that the biofilms can be considered as a good candidate to be studied further in the packaging industry.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Melakuu Tesfaye
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Zelalem Tumssa
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
4
|
Cruz RMS, Krauter V, Krauter S, Agriopoulou S, Weinrich R, Herbes C, Scholten PBV, Uysal-Unalan I, Sogut E, Kopacic S, Lahti J, Rutkaite R, Varzakas T. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022; 11:3087. [PMID: 36230164 PMCID: PMC9563026 DOI: 10.3390/foods11193087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The demand to develop and produce eco-friendly alternatives for food packaging is increasing. The huge negative impact that the disposal of so-called "single-use plastics" has on the environment is propelling the market to search for new solutions, and requires initiatives to drive faster responses from the scientific community, the industry, and governmental bodies for the adoption and implementation of new materials. Bioplastics are an alternative group of materials that are partly or entirely produced from renewable sources. Some bioplastics are biodegradable or even compostable under the right conditions. This review presents the different properties of these materials, mechanisms of biodegradation, and their environmental impact, but also presents a holistic overview of the most important bioplastics available in the market and their potential application for food packaging, consumer perception of the bioplastics, regulatory aspects, and future challenges.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Victoria Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Simon Krauter
- Packaging and Resource Management, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| | - Ramona Weinrich
- Department of Consumer Behaviour in the Bioeconomy, University of Hohenheim, Wollgrasweg 49, 70599 Stuttgart, Germany
| | - Carsten Herbes
- Institute for International Research on Sustainable Management and Renewable Energy, Nuertingen Geislingen University, Neckarsteige 6-10, 72622 Nuertingen, Germany
| | - Philip B V Scholten
- Bloom Biorenewables, Route de l'Ancienne Papeterie 106, 1723 Marly, Switzerland
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- CiFOOD-Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
| | - Ece Sogut
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark
- Department of Food Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Samir Kopacic
- Institute for Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria
| | - Johanna Lahti
- Sustainable Products and Materials, VTT Technical Research Centre of Finland, Visiokatu 4, 33720 Tampere, Finland
| | - Ramune Rutkaite
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd 19, 50254 Kaunas, Lithuania
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece
| |
Collapse
|
5
|
Cheng Z, Chen Z, Zhao B, Liao H, Yu T, Li Y. High-performance degradable films of poly(lactic acid)/thermochromic microcapsule composites with thermochromic and energy storage functions via blown film process. Int J Biol Macromol 2022; 220:238-249. [PMID: 35985393 DOI: 10.1016/j.ijbiomac.2022.08.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022]
Abstract
In this study, the polylactic acid (PLA)/reversible thermochromic microcapsule (TCM) packaging application film was successfully synthesized by the blown film process. White mineral oil (WMO) was used as a dispersant to prepare PLA/TCM extruded materials with different mass fractions, in which the mass fraction of TCM was up to 20 wt% and the structural, thermal, mechanical, barrier, thermochromic, and heat storage-release properties were evaluated. It was found that WMO had a plasticizing effect, the elongation at break and water vapor transmission rate of the films with the addition of 7 wt% TCM were increased by 533 % and 31.38 %, respectively. For each thermochromic film, significant thermochromic and energy storage release phenomena were observed. For instance, 20 wt% TCM thermochromic film was most effective for prolonging the holding time and suspending the temperature drop rate. In general, thermochromic packaging films with optimized constitutes were successfully synthesized by the blown film process, which provides essential reference significance for the large-scale thermochromic film applications.
Collapse
Affiliation(s)
- Zefei Cheng
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Zixuan Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Binbin Zhao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Haoran Liao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Yu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; The Shanghai Key Laboratory of Space Mapping and Remote Sensing for Planetary Exploration, Tongji University, Shanghai 200092, PR China.
| | - Yan Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
6
|
Production of Eco-Sustainable Materials: Compatibilizing Action in Poly (Lactic Acid)/High-Density Biopolyethylene Bioblends. SUSTAINABILITY 2021. [DOI: 10.3390/su132112157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Motivated by environment preservation, the increased use of eco-friendly materials such as biodegradable polymers and biopolymers has raised the interest of researchers and the polymer industry. In this approach, this work aimed to produce bioblends using poly (lactic acid) (PLA) and high-density biopolyethylene (BioPE); due to the low compatibility between these polymers, this work evaluated the additional influence of the compatibilizing agents: poly (ethylene octene) and ethylene elastomer grafted with glycidyl methacrylate (POE-g-GMA and EE-g-GMA, respectively), polyethylene grafted with maleic anhydride (PE-g-MA), polyethylene grafted with acrylic acid (PE-g-AA) and the block copolymer styrene (ethylene-butylene)-styrene grafted with maleic anhydride (SEBS-g-MA) to the thermal, mechanical, thermomechanical, wettability and morphological properties of PLA/BioPE. Upon the compatibilizing agents’ addition, there was an increase in the degree of crystallinity observed by DSC (2.3–7.6% related to PLA), in the thermal stability as verified by TG (6–15 °C for TD10%, 6–11 °C TD50% and 112–121 °C for TD99.9% compared to PLA) and in the mechanical properties such as elongation at break (with more expressive values for the addition of POE-g-GMA and SEBS-g-MA, 9 and 10%, respectively), tensile strength (6–19% increase compared to PLA/BioPE bioblend) and a significant increase in impact strength, with evidence of plastic deformation as observed through SEM, promoted by the PLA/ BioPE phases improvement. Based on the gathered data, the added compatibilizers provided higher performing PLA/BioPE. The POE-g-GMA compatibilizer was considered to provide the best properties in relation to the PLA/BioPE bioblend, as well as the PLA matrix, mainly in relation to impact strength, with an increase of approximately 133 and 100% in relation to PLA and PLA/BioPE bioblend, respectively. Therefore, new ecological materials can be manufactured, aiming at benefits for the environment and society, contributing to sustainable development and stimulating the consumption of eco-products.
Collapse
|