1
|
Bee SL, Hamid ZAA. Chitosan-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: A review. Int J Biol Macromol 2025; 295:139504. [PMID: 39761899 DOI: 10.1016/j.ijbiomac.2025.139504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative procedures used to repair periodontal defects caused by periodontitis. In both procedures, a barrier membrane is placed at the interface between the soft tissue and the periodontal defect, serving to impede the infiltration of soft tissue while creating a secluded space for periodontal regeneration. Recently, barrier membranes based on chitosan (CS) have emerged as a promising avenue for these applications. However, despite numerous studies on the development of CS-based membranes, comprehensive review articles specifically addressing their progress in GTR/GBR applications remain scarce. Herein, we review recent research and advancements in the use of CS-based membranes for periodontal GTR and GBR. The review begins by highlighting the advantageous properties of CS that make it a suitable biomaterial for GTR/GBR applications. Next, the development of composite CS-based membranes, reinforced with various compositions like bioactive fillers and therapeutic agents, is discussed in detail based on recent literature, with a focus on their enhanced efficacy in promoting periodontal regeneration. Finally, the review explores the emergence of functionally graded CS-based membranes, emphasizing their potential to address specific challenges encountered in GTR/GBR procedures.
Collapse
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
2
|
Qasim SSB, Ahmed J, Karched M, Al-Asfour A. The potential of nano graphene oxide and chlorhexidine composite membranes for use as a surface layer in functionally graded membranes for periodontal lesions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:63. [PMID: 38103062 PMCID: PMC10725336 DOI: 10.1007/s10856-023-06767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Membranes have been used for treating periodontal defects and play a crucial role in guided bone regeneration applications. Nano graphene oxide have been exploited in tissue engineering due to its biomechanical properties. Its composite formulations with hydroxyapatite and chitosan with controlled degradation could aid in becoming part of a surface layer in a functionally graded membrane. The aim of the study was to synthesize chitosan and composite formulations of nano graphene oxide, hydroxyapatite and chlorhexidine digluconate using solvent casting technique and to characterize the physiochemical, mechanical, water vapor transmission rate (barrier), degradation and antimicrobial potential of the membranes. Altogether four different membranes were prepared (CH, CCG, 3511 and 3322). Results revealed the chemical interactions of hydroxyapatite, chitosan and nanographene oxide due to inter and intra molecular hydrogen bonding. The tensile strength of 3322 (33.72 ± 6.3 MPa) and 3511 (32.06 ± 5.4 MPa) was higher than CH (27.46 ± 9.6 MPa). CCG showed the lowest water vapor transmission rate (0.23 ± 0.01 g/h.m2) but the highest weight loss at day 14 (76.6 %). 3511 showed a higher drug release after 72 h (55.6 %) Significant biofilm growth inhibition was observed for all membranes. 3511 showed complete inhibition against A. actinomycetemcomitans. Detailed characterization of the synthesized membranes revealed that 3511 composite membrane proved to be a promising candidate for use as a surface layer of membranes for guided bone regeneration of periodontal lesions.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait, Kuwait.
| | - Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Maribasappa Karched
- Department of Biological Sciences, College of Dentistry, Kuwait University, Kuwait, Kuwait
| | - Adel Al-Asfour
- Department of Surgical Sciences, College of Dentistry, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
3
|
Souto-Lopes M, Grenho L, Manrique YA, Dias MM, Fernandes MH, Monteiro FJ, Salgado CL. Full physicochemical and biocompatibility characterization of a supercritical CO 2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regeneration. BIOMATERIALS ADVANCES 2023; 146:213280. [PMID: 36682201 DOI: 10.1016/j.bioadv.2023.213280] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Despite bone's innate self-renewal capability, some periodontal pathologic and traumatic defects' size inhibits full spontaneous regeneration. This current research characterized a 3D porous biodegradable nano-hydroxyapatite/chitosan (nHAp/CS, 70/30) scaffold for periodontal bone regeneration, which preparation method includes the final solvent extraction and sterilization through supercritical CO2 (scCO2). Micro-CT analysis revealed the fully interconnected porous microstructure of the nHAp/CS scaffold (total porosity 78 %, medium pore size 200 μm) which is critical for bone regeneration. Scanning electron microscopy (SEM) showed HAp crystals forming on the surface of the nHAp/CS scaffold after 21 days in simulated body fluid, demonstrating its bioactivity in vitro. The presence of nHAp in the scaffolds promoted a significantly lower biodegradation rate compared to a plain CS scaffold in PBS. Dynamic mechanical analysis confirmed their viscoelasticity, but the presence of nHAp significantly enhanced the storage modulus (42.34 ± 6.09 kPa at 10 Hz after 28 days in PBS), showing that it may support bone ingrowth at low-load bearing bone defects. Both scaffold types significantly inhibited the growth, attachment and colony formation abilities of S. aureus and E. coli, enhancing the relevance of chitosan in the grafts' composition for the naturally contaminated oral environment. At SEM and laser scanning confocal microscopy, MG63 cells showed normal morphology and could adhere and proliferate inside the biomaterials' porous structure, especially for the nHAp/CS scaffold, reaching higher proliferative rate at day 14. MG63 cells seeded within nHAp/CS scaffolds presented a higher expression of RUNX2, collagen A1 and Sp7 osteogenic genes compared to the CS samples. The in vivo subcutaneous implantation in mice of both scaffold types showed lower biodegradability with the preservation of the scaffolds porous structure that allowed the ingrowth of connective tissue until 5 weeks. Histology shows an intensive and progressive ingrowth of new vessels and collagen between the 3rd and the 5th week, especially for the nHAp/CS scaffold. So far, the scCO2 method enabled the production of a cost-effective and environment-friendly ready-to-use nHAp/CS scaffold with microstructural, chemical, mechanical and biocompatibility features that make it a suitable bone graft alternative for defect sites in an adverse environment as in periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Mariana Souto-Lopes
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Liliana Grenho
- Faculty of Dental Medicine of the University of Porto, R. Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE - Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Portugal
| | - Yaidelin Alves Manrique
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Madalena Maria Dias
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Helena Fernandes
- Faculty of Dental Medicine of the University of Porto, R. Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE - Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Portugal
| | - Fernando Jorge Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
4
|
Adarsh R, Das EC, Gopan GV, Selvam S, Komath M. Functionally Graded Bioactive Composites Based on Poly(vinyl alcohol) Made through Thiol-Ene Click Reaction. ACS OMEGA 2022; 7:29246-29255. [PMID: 36033676 PMCID: PMC9404466 DOI: 10.1021/acsomega.2c03382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Functionally graded materials (FGMs) composed of a polymer matrix embedded with calcium phosphate particles are preferred for bone tissue engineering, as they can mimic the hierarchical and gradient structure of bones. In this study, we report the design and development of a FGM based on thiolated poly(vinyl alcohol) (TPVA) and nano-hydroxyapatite (nano-HA) with graded bioactivity, cell compatibility, and degradability properties that are conducive for bone regeneration. The polymer matrix comprises crosslinked poly(vinyl alcohol) with ester and thioether linkages formed via the thiol-ene click reaction, avoiding undesired additives and byproducts. Freshly precipitated and spray-dried HA was mixed with the TPVA hydrogel, and layers of varying concentrations were cast. Upon lyophilization, the hydrogel structure yielded porous sheets of the graded composite of TPVA and nano-HA. The new FGM showed higher values of tensile strength and degradation in phosphate buffer saline (PBS) in vitro, compared to bare TPVA. The bioactive nature of the FGM was confirmed through bioactivity studies in simulated body fluid (SBF), while cytocompatibility was demonstrated with human periodontal ligament cells in vitro. Cumulatively, our results indicate that based on the composition, mechanical properties, bioactivity, and cytocompatibility, the fabricated TPVA-HA composites can find potential use as guided bone regeneration (GBR) membranes.
Collapse
|
5
|
Barrier Membrane in Regenerative Therapy: A Narrative Review. MEMBRANES 2022; 12:membranes12050444. [PMID: 35629770 PMCID: PMC9143924 DOI: 10.3390/membranes12050444] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023]
Abstract
Guided bone and tissue regeneration remains an integral treatment modality to regenerate bone surrounding teeth and dental implants. Barrier membranes have been developed and produced commercially to allow space for bone regeneration and prevent the migration of unwanted cells. Ideal membrane properties, including biocompatibility, sufficient structural integrity and suitable shelf life with easy clinical application, are important to ensure good clinical regenerative outcomes. Membranes have various types, and their clinical application depends on the origin, material, structure and properties. This narrative review aims to describe the currently available barrier membranes in terms of history, main features, types, indication and clinical application and classify them into various groups. Various membranes, including those which are resorbable and non-resorbable, synthetic, added with growth factors and composed of modern materials, such as high-grade polymer (Polyetheretherketone), are explored in this review.
Collapse
|