1
|
Warnakulasooriya D, Bondarenko VE. EAD Mechanisms in Hypertrophic Mouse Ventricular Myocytes: Insights from a Compartmentalized Mathematical Model. Bull Math Biol 2025; 87:49. [PMID: 39992477 DOI: 10.1007/s11538-025-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Transverse aortic constriction (TAC) is one of the experimental mouse models that are designed to investigate cardiac hypertrophy and heart failure. Most of the studies with this model are devoted to the stage of developed heart failure. However, several studies of the early stages (hypertrophy after 1 week of TAC) of this disease found significant changes in the β-adrenergic system, electrical activity, and Ca2+ dynamics in mouse ventricular myocytes. To provide a quantitative description of cardiac hypertrophy, we developed a new compartmentalized mathematical model of hypertrophic mouse ventricular myocytes for the early stage after the TAC procedure. The model described the changes in cell geometry, action potentials, [Ca2+]i transients, and β1- and β2-adrenergic signaling systems. We also showed that the hypertrophic myocytes demonstrated early afterdepolarizations (EADs) upon stimulation with isoproterenol at relatively long stimulation periods. Simulation of the hypertrophic myocyte activities revealed that the synergistic effects of the late Na+ current, the L-type Ca2+ current, and the T-type Ca2+ current were responsible for the initiation of EADs. The mechanisms of EAD and its suppression were investigated and sensitivity analysis was performed. Simulation results obtained with the hypertrophic cell model were compared to those from the normal ventricular myocytes. The developed mathematical model can be used for the explanation of the existing experimental data, for the development of the models for other hypertrophic phenotypes, and to make experimentally testable predictions of a hypertrophic myocyte's behavior.
Collapse
Affiliation(s)
- Dilmini Warnakulasooriya
- Department of Mathematics and Statistics, Georgia State University, 25 Park Place, Room 1346, Atlanta, GA, 30303-3083, USA
| | - Vladimir E Bondarenko
- Department of Mathematics and Statistics, Georgia State University, 25 Park Place, Room 1346, Atlanta, GA, 30303-3083, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Paudel R, Jafri MS, Ullah A. Gain-of-Function and Loss-of-Function Mutations in the RyR2-Expressing Gene Are Responsible for the CPVT1-Related Arrhythmogenic Activities in the Heart. Curr Issues Mol Biol 2024; 46:12886-12910. [PMID: 39590361 PMCID: PMC11592891 DOI: 10.3390/cimb46110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca2+ release (SOICR), and (d) loss of function. The goal of this study was to use computational models to understand these four mechanisms and how they might contribute to arrhythmia. To this end, we have developed a local control stochastic model of a ventricular cardiac myocyte and used it to investigate how the Ca2+ dynamics in the mutant RyR2 are responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic (β-AR) stimulation or pauses afterward. Into the model, we have incorporated 20,000 distinct cardiac dyads consisting of stochastically gated L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) and the intervening dyadic cleft to analyze the alterations in Ca2+ dynamics. Recent experimental findings were incorporated into the model parameters to test these proposed mechanisms and their role in triggering arrhythmias. The model could not find any connection between SOICR and the destabilization of binding proteins as the arrhythmic mechanisms in the mutant myocyte. On the other hand, the model was able to observe loss-of-function and gain-of-function mutations resulting in EADs (Early Afterdepolarizations) and variations in action potential amplitudes and durations as the precursors to generate arrhythmia, respectively. These computational studies demonstrate how GOF and LOF mutations can lead to arrhythmia and cast doubt on the feasibility of SOICR as a mechanism of arrhythmia.
Collapse
Affiliation(s)
- Roshan Paudel
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
3
|
Alvarez JAE, Jafri MS, Ullah A. Local Control Model of a Human Ventricular Myocyte: An Exploration of Frequency-Dependent Changes and Calcium Sparks. Biomolecules 2023; 13:1259. [PMID: 37627324 PMCID: PMC10452762 DOI: 10.3390/biom13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Calcium (Ca2+) sparks are the elementary events of excitation-contraction coupling, yet they are not explicitly represented in human ventricular myocyte models. A stochastic ventricular cardiomyocyte human model that adapts to intracellular Ca2+ ([Ca2+]i) dynamics, spark regulation, and frequency-dependent changes in the form of locally controlled Ca2+ release was developed. The 20,000 CRUs in this model are composed of 9 individual LCCs and 49 RyRs that function as couplons. The simulated action potential duration at 1 Hz steady-state pacing is ~0.280 s similar to human ventricular cell recordings. Rate-dependence experiments reveal that APD shortening mechanisms are largely contributed by the L-type calcium channel inactivation, RyR open fraction, and [Ca2+]myo concentrations. The dynamic slow-rapid-slow pacing protocol shows that RyR open probability during high pacing frequency (2.5 Hz) switches to an adapted "nonconducting" form of Ca2+-dependent transition state. The predicted force was also observed to be increased in high pacing, but the SR Ca2+ fractional release was lower due to the smaller difference between diastolic and systolic [Ca2+]SR. Restitution analysis through the S1S2 protocol and increased LCC Ca2+-dependent activation rate show that the duration of LCC opening helps modulate its effects on the APD restitution at different diastolic intervals. Ultimately, a longer duration of calcium sparks was observed in relation to the SR Ca2+ loading at high pacing rates. Overall, this study demonstrates the spontaneous Ca2+ release events and ion channel responses throughout various stimuli.
Collapse
Affiliation(s)
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
4
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
5
|
McCoy MD, Ullah A, Lederer WJ, Jafri MS. Understanding Calmodulin Variants Affecting Calcium-Dependent Inactivation of L-Type Calcium Channels through Whole-Cell Simulation of the Cardiac Ventricular Myocyte. Biomolecules 2022; 13:72. [PMID: 36671457 PMCID: PMC9855640 DOI: 10.3390/biom13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mutations in the calcium-sensing protein calmodulin (CaM) have been linked to two cardiac arrhythmia diseases, Long QT Syndrome 14 (LQT14) and Catecholaminergic Polymorphic Ventricular Tachycardia Type 4 (CPVT4), with varying degrees of severity. Functional characterization of the CaM mutants most strongly associated with LQT14 show a clear disruption of the calcium-dependent inactivation (CDI) of the L-Type calcium channel (LCC). CPVT4 mutants on the other hand are associated with changes in their affinity to the ryanodine receptor. In clinical studies, some variants have been associated with both CPVT4 and LQT15. This study uses simulations in a model for excitation-contraction coupling in the rat ventricular myocytes to understand how LQT14 variant might give the functional phenotype similar to CPVT4. Changing the CaM-dependent transition rate by a factor of 0.75 corresponding to the D96V variant and by a factor of 0.90 corresponding to the F142L or N98S variants, in a physiologically based stochastic model of the LCC prolonger, the action potential duration changed by a small amount in a cardiac myocyte but did not disrupt CICR at 1, 2, and 4 Hz. Under beta-adrenergic simulation abnormal excitation-contraction coupling was observed above 2 Hz pacing for the mutant CaM. The same conditions applied under beta-adrenergic stimulation led to the rapid onset of arrhythmia in the mutant CaM simulations. Simulations with the LQT14 mutations under the conditions of rapid pacing with beta-adrenergic stimulation drives the cardiac myocyte toward an arrhythmic state known as Ca2+ overload. These simulations provide a mechanistic link to a disease state for LQT14-associated mutations in CaM to yield a CPVT4 phenotype. The results show that small changes to the CaM-regulated inactivation of LCC promote arrhythmia and underscore the significance of CDI in proper heart function.
Collapse
Affiliation(s)
- Matthew D. McCoy
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
6
|
Paudel R, Jafri MS, Ullah A. Pacing Dynamics Determines the Arrhythmogenic Mechanism of the CPVT2-Causing CASQ2 G112+5X Mutation in a Guinea Pig Ventricular Myocyte Computational Model. Genes (Basel) 2022; 14:23. [PMID: 36672764 PMCID: PMC9858930 DOI: 10.3390/genes14010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Calsequestrin Type 2 (CASQ2) is a high-capacity, low-affinity, Ca2+-binding protein expressed in the sarcoplasmic reticulum (SR) of the cardiac myocyte. Mutations in CASQ2 have been linked to the arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT2) that occurs with acute emotional stress or exercise can result in sudden cardiac death (SCD). CASQ2G112+5X is a 16 bp (339-354) deletion CASQ2 mutation that prevents the protein expression due to premature stop codon. Understanding the subcellular mechanisms of CPVT2 is experimentally challenging because the occurrence of arrhythmia is rare. To obtain an insight into the characteristics of this rare disease, simulation studies using a local control stochastic computational model of the Guinea pig ventricular myocyte investigated how the mutant CASQ2s may be responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic stimulation or in the slowing of heart rate afterward once β-adrenergic stimulation ceases. Adjustment of the computational model parameters based upon recent experiments explore the functional changes caused by the CASQ2 mutation. In the simulation studies under rapid pacing (6 Hz), electromechanically concordant cellular alternans appeared under β-adrenergic stimulation in the CPVT mutant but not in the wild-type nor in the non-β-stimulated mutant. Similarly, the simulations of accelerating pacing from slow to rapid and back to the slow pacing did not display alternans but did generate early afterdepolarizations (EADs) during the period of second slow pacing subsequent acceleration of rapid pacing.
Collapse
Affiliation(s)
- Roshan Paudel
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
7
|
Paudel R, Jafri MS, Ullah A. The Role of Ca 2+ Sparks in Force Frequency Relationships in Guinea Pig Ventricular Myocytes. Biomolecules 2022; 12:1577. [PMID: 36358926 PMCID: PMC9687237 DOI: 10.3390/biom12111577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 10/13/2023] Open
Abstract
Calcium sparks are the elementary Ca2+ release events in excitation-contraction coupling that underlie the Ca2+ transient. The frequency-dependent contractile force generated by cardiac myocytes depends upon the characteristics of the Ca2+ transients. A stochastic computational local control model of a guinea pig ventricular cardiomyocyte was developed, to gain insight into mechanisms of force-frequency relationship (FFR). This required the creation of a new three-state RyR2 model that reproduced the adaptive behavior of RyR2, in which the RyR2 channels transition into a different state when exposed to prolonged elevated subspace [Ca2+]. The model simulations agree with previous experimental and modeling studies on interval-force relations. Unlike previous common pool models, this local control model displayed stable action potential trains at 7 Hz. The duration and the amplitude of the [Ca2+]myo transients increase in pacing rates consistent with the experiments. The [Ca2+]myo transient reaches its peak value at 4 Hz and decreases afterward, consistent with experimental force-frequency curves. The model predicts, in agreement with previous modeling studies of Jafri and co-workers, diastolic sarcoplasmic reticulum, [Ca2+]sr, and RyR2 adaptation increase with the increased stimulation frequency, producing rising, rather than falling, amplitude of the myoplasmic [Ca2+] transients. However, the local control model also suggests that the reduction of the L-type Ca2+ current, with an increase in pacing frequency due to Ca2+-dependent inactivation, also plays a role in the negative slope of the FFR. In the simulations, the peak Ca2+ transient in the FFR correlated with the highest numbers of SR Ca2+ sparks: the larger average amplitudes of those sparks, and the longer duration of the Ca2+ sparks.
Collapse
Affiliation(s)
- Roshan Paudel
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
8
|
Abstract
Flecainide, a cardiac class 1C blocker of the surface membrane sodium channel (NaV1.5), has also been reported to reduce cardiac ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum (SR) Ca2+ release. It has been introduced as a clinical antiarrhythmic agent for catecholaminergic polymorphic ventricular tachycardia (CPVT), a condition most commonly associated with gain-of-function RyR2 mutations. Current debate concerns both cellular mechanisms of its antiarrhythmic action and molecular mechanisms of its RyR2 actions. At the cellular level, it targets NaV1.5, RyR2, Na+/Ca2+ exchange (NCX), and additional proteins involved in excitation-contraction (EC) coupling and potentially contribute to the CPVT phenotype. This Viewpoint primarily addresses the various direct molecular actions of flecainide on isolated RyR2 channels in artificial lipid bilayers. Such studies demonstrate different, multifarious, flecainide binding sites on RyR2, with voltage-dependent binding in the channel pore or voltage-independent binding at distant peripheral sites. In contrast to its single NaV1.5 pore binding site, flecainide may bind to at least four separate inhibitory sites on RyR2 and one activation site. None of these binding sites have been specifically located in the linear RyR2 sequence or high-resolution structure. Furthermore, it is not clear which of the inhibitory sites contribute to flecainide's reduction of spontaneous Ca2+ release in cellular studies. A confounding observation is that flecainide binding to voltage-dependent inhibition sites reduces cation fluxes in a direction opposite to physiological Ca2+ flow from SR lumen to cytosol. This may suggest that, rather than directly blocking Ca2+ efflux, flecainide can reduce Ca2+ efflux by blocking counter currents through the pore which otherwise limit SR membrane potential change during systolic Ca2+ efflux. In summary, the antiarrhythmic effects of flecainide in CPVT seem to involve multiple components of EC coupling and multiple actions on RyR2. Their clarification may identify novel specific drug targets and facilitate flecainide's clinical utilization in CPVT.
Collapse
Affiliation(s)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A. Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Angela F. Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
9
|
Dabravolski SA, Sadykhov NK, Kartuesov AG, Borisov EE, Sukhorukov VN, Orekhov AN. The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23147863. [PMID: 35887211 PMCID: PMC9321738 DOI: 10.3390/ijms23147863] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as the presence in diabetic patients of abnormal cardiac structure and performance (such as left ventricular hypertrophy, fibrosis, and arrhythmia) in the absence of other cardiac risk factors (such as hypertension or coronary artery disease). Although the pathogenesis of DCM remains unclear currently, mitochondrial structural and functional dysfunctions are recognised as a central player in the DCM development. In this review, we focus on the role of mitochondrial dynamics, biogenesis and mitophagy, Ca2+ metabolism and bioenergetics in the DCM development and progression. Based on the crucial role of mitochondria in DCM, application of mitochondria-targeting therapies could be effective strategies to slow down the progression of the disease.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Andrey G. Kartuesov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Evgeny E. Borisov
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia; (E.E.B.); (V.N.S.)
| | - Vasily N. Sukhorukov
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia; (E.E.B.); (V.N.S.)
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
| |
Collapse
|
10
|
Ullah A, Hoang-Trong MT, Lederer WJ, Winslow RL, Jafri MS. Critical Requirements for the Initiation of a Cardiac Arrhythmia in Rat Ventricle: How Many Myocytes? Cells 2022; 11:cells11121878. [PMID: 35741007 PMCID: PMC9221049 DOI: 10.3390/cells11121878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide due in a large part to arrhythmia. In order to understand how calcium dynamics play a role in arrhythmogenesis, normal and dysfunctional Ca2+ signaling in a subcellular, cellular, and tissued level is examined using cardiac ventricular myocytes at a high temporal and spatial resolution using multiscale computational modeling. Ca2+ sparks underlie normal excitation-contraction coupling. However, under pathological conditions, Ca2+ sparks can combine to form Ca2+ waves. These propagating elevations of (Ca2+)i can activate an inward Na+-Ca2+ exchanger current (INCX) that contributes to early after-depolarization (EADs) and delayed after-depolarizations (DADs). However, how cellular currents lead to full depolarization of the myocardium and how they initiate extra systoles is still not fully understood. This study explores how many myocytes must be entrained to initiate arrhythmogenic depolarizations in biophysically detailed computational models. The model presented here suggests that only a small number of myocytes must activate in order to trigger an arrhythmogenic propagating action potential. These conditions were examined in 1-D, 2-D, and 3-D considering heart geometry. The depolarization of only a few hundred ventricular myocytes is required to trigger an ectopic depolarization. The number decreases under disease conditions such as heart failure. Furthermore, in geometrically restricted parts of the heart such as the thin muscle strands found in the trabeculae and papillary muscle, the number of cells needed to trigger a propagating depolarization falls even further to less than ten myocytes.
Collapse
Affiliation(s)
- Aman Ullah
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (A.U.); (M.T.H.-T.)
| | - Minh Tuan Hoang-Trong
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (A.U.); (M.T.H.-T.)
| | - William Jonathan Lederer
- Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Raimond L. Winslow
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 20218, USA;
- The Roux Institute, Northeastern University, Portland, ME 04102, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (A.U.); (M.T.H.-T.)
- Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 20218, USA;
- Correspondence: ; Tel.: +1-703-993-8420
| |
Collapse
|
11
|
Hoang-Trong TM, Ullah A, Lederer WJ, Jafri MS. A Stochastic Spatiotemporal Model of Rat Ventricular Myocyte Calcium Dynamics Demonstrated Necessary Features for Calcium Wave Propagation. MEMBRANES 2021; 11:989. [PMID: 34940490 PMCID: PMC8706945 DOI: 10.3390/membranes11120989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Calcium (Ca2+) plays a central role in the excitation and contraction of cardiac myocytes. Experiments have indicated that calcium release is stochastic and regulated locally suggesting the possibility of spatially heterogeneous calcium levels in the cells. This spatial heterogeneity might be important in mediating different signaling pathways. During more than 50 years of computational cell biology, the computational models have been advanced to incorporate more ionic currents, going from deterministic models to stochastic models. While periodic increases in cytoplasmic Ca2+ concentration drive cardiac contraction, aberrant Ca2+ release can underly cardiac arrhythmia. However, the study of the spatial role of calcium ions has been limited due to the computational expense of using a three-dimensional stochastic computational model. In this paper, we introduce a three-dimensional stochastic computational model for rat ventricular myocytes at the whole-cell level that incorporate detailed calcium dynamics, with (1) non-uniform release site placement, (2) non-uniform membrane ionic currents and membrane buffers, (3) stochastic calcium-leak dynamics and (4) non-junctional or rogue ryanodine receptors. The model simulates spark-induced spark activation and spark-induced Ca2+ wave initiation and propagation that occur under conditions of calcium overload at the closed-cell condition, but not when Ca2+ levels are normal. This is considered important since the presence of Ca2+ waves contribute to the activation of arrhythmogenic currents.
Collapse
Affiliation(s)
- Tuan Minh Hoang-Trong
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
| | - Aman Ullah
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
| | - William Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Mohsin Saleet Jafri
- School of Systems Biology, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA; (T.M.H.-T.); (A.U.)
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|