1
|
Honaryar H, Amirfattahi S, Nguyen D, Kim K, Shillcock JC, Niroobakhsh Z. A Versatile Approach to Stabilize Liquid-Liquid Interfaces using Surfactant Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403013. [PMID: 38874067 DOI: 10.1002/smll.202403013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water-oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid-in-liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid-liquid interfaces not only offers unprecedented opportunities for fine-tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self-healing, and porosity, which could have significant implications for various industries.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Duoc Nguyen
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Kyungtae Kim
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Julian C Shillcock
- Laboratory for Biomolecular Modeling, École Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Blue Brain Project, École Polytechnique Federale de Lausanne (EPFL), Campus Biotech, Geneva, CH-1202, Switzerland
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
2
|
Anila MM, Ghosh R, Różycki B. Membrane curvature sensing by model biomolecular condensates. SOFT MATTER 2023; 19:3723-3732. [PMID: 37190858 DOI: 10.1039/d3sm00131h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biomolecular condensates (BCs) are fluid droplets that form in biological cells by liquid-liquid phase separation. Their major components are intrinsically disordered proteins. Vast attention has been given in recent years to BCs inside the cytosol and nucleus. BCs at the cell membrane have not been studied to the same extent so far. However, recent studies provide increasingly more examples of interfaces between BCs and membranes which function as platforms for diverse biomolecular processes. Galectin-3, for example, is known to mediate clathrin-independent endocytosis and has been recently shown to undergo liquid-liquid phase separation, but the function of BCs of galectin-3 in endocytic pit formation is unknown. Here, we use dissipative particle dynamics simulations to study a generic coarse-grained model for BCs interacting with lipid membranes. In analogy to galectin-3, we consider polymers comprising two segments - one of them mediates multivalent attractive interactions between the polymers, and the other one has affinity for association with specific lipid head groups. When these polymers are brought into contact with a multi-component membrane, they spontaneously assemble into droplets and, simultaneously, induce lateral separation of lipids within the membrane. Interestingly, we find that if the membrane is bent, the polymer droplets localize at membrane regions curved inward. Although the polymers have no particular shape or intrinsic curvature, they appear to sense membrane curvature when clustered at the membrane. Our results indicate toward a generic mechanism of membrane curvature sensing by BCs involved in such processes as endocytosis.
Collapse
Affiliation(s)
- Midhun Mohan Anila
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Rikhia Ghosh
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
3
|
Close, but not too close: a mesoscopic description of (a)symmetry and membrane shaping mechanisms. Emerg Top Life Sci 2023; 7:81-93. [PMID: 36645200 DOI: 10.1042/etls20220078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
Biomembranes are fundamental to our understanding of the cell, the basic building block of all life. An intriguing aspect of membranes is their ability to assume a variety of shapes, which is crucial for cell function. Here, we review various membrane shaping mechanisms with special focus on the current understanding of how local curvature and local rigidity induced by membrane proteins leads to emerging forces and consequently large-scale membrane deformations. We also argue that describing the interaction of rigid proteins with membranes purely in terms of local membrane curvature is incomplete and that changes in the membrane rigidity moduli must also be considered.
Collapse
|