1
|
Paterson C, Vargis E. Applying low levels of strain to model nascent phenomenon of retinal pathologies. LAB ON A CHIP 2024; 24:5338-5346. [PMID: 39575534 PMCID: PMC11884429 DOI: 10.1039/d4lc00205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in aging populations. A better understanding of the mechanisms of the disease, especially at early stages, could elucidate new treatment targets. One characteristic of AMD is strain on the retinal pigment epithelium (RPE), a crucial layer of the retina. This strain can be caused by physical phenomena like waste aggregation underneath the RPE, drusen formation, or leaky blood vessels that infiltrate the retina during choroidal neovascularization (CNV). It is not well understood how strain affects RPE cell function. Most models generate equibiaxial strain or higher levels of strain that are not representative of early stages of AMD. To overcome these issues, we engineered a device to cause controlled, low amounts of localized, radial strain (maximum ∼1.4%). This strain level is more mimetic to what occurs during aging or at the beginning of physical disruptions experienced during AMD. To evaluate how RPE cells respond to this physical stimulus, primary porcine RPE cells were exposed to low levels of strain applied by our custom-made device. Cell secretions and genetic expression were analyzed to determine how proteins linked to drusen and CNV are affected. The results indicate that this low amount of strain does not immediately initiate angiogenesis but causes changes in mRNA expression of amyloid precursor protein (APP), which plays a role in retinal health and drusen accumulation. This research offers insight into AMD progression as well as the health of other organs, including the brain.
Collapse
Affiliation(s)
- Chase Paterson
- Biological Engineering, Utah State University College of Engineering, 4105 Old Main Hill, ENGR 402, Logan, Utah, USA.
| | - Elizabeth Vargis
- Biological Engineering, Utah State University College of Engineering, 4105 Old Main Hill, ENGR 402, Logan, Utah, USA.
| |
Collapse
|
2
|
Wumiti T, Wang L, Xu B, Ma Y, Zhu Y, Zuo X, Qian W, Chu X, Sun H. lncTIMP3 promotes osteogenic differentiation of bone marrow mesenchymal stem cells via miR-214/Smad4 axis to relieve postmenopausal osteoporosis. Mol Biol Rep 2024; 51:719. [PMID: 38824271 DOI: 10.1007/s11033-024-09652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Promoting the balance between bone formation and bone resorption is the main therapeutic goal for postmenopausal osteoporosis (PMOP), and bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important regulatory role in this process. Recently, several long non-coding RNAs (lncRNAs) have been reported to play an important regulatory role in the occurrence and development of OP and participates in a variety of physiological and pathological processes. However, the role of lncRNA tissue inhibitor of metalloproteinases 3 (lncTIMP3) remains to be investigated. METHODS The characteristics of BMSCs isolated from the PMOP rat model were verified by flow cytometry assay, alkaline phosphatase (ALP), alizarin red and Oil Red O staining assays. Micro-CT and HE staining assays were performed to examine histological changes of the vertebral trabeculae of the rats. RT-qPCR and western blotting assays were carried out to measure the RNA and protein expression levels. The subcellular location of lncTIMP3 was analyzed by FISH assay. The targeting relationships were verified by luciferase reporter assay and RNA pull-down assay. RESULTS The trabecular spacing was increased in the PMOP rats, while ALP activity and the expression levels of Runx2, Col1a1 and Ocn were all markedly decreased. Among the RNA sequencing results of the clinical samples, lncTIMP3 was the most downregulated differentially expressed lncRNA, also its level was significantly reduced in the OVX rats. Knockdown of lncTIMP3 inhibited osteogenesis of BMSCs, whereas overexpression of lncTIMP3 exhibited the reverse results. Subsequently, lncTIMP3 was confirmed to be located in the cytoplasm of BMSCs, implying its potential as a competing endogenous RNA for miRNAs. Finally, the negative targeting correlations of miR-214 between lncTIMP3 and Smad4 were elucidated in vitro. CONCLUSION lncTIMP3 may delay the progress of PMOP by promoting the activity of BMSC, the level of osteogenic differentiation marker gene and the formation of calcium nodules by acting on the miR-214/Smad4 axis. This finding may offer valuable insights into the possible management of PMOP.
Collapse
Affiliation(s)
- Taxi Wumiti
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University, Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| | - Bin Xu
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xinchen Zuo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Weiqing Qian
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Xudong Chu
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China.
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, Wuxi, 214187, Jiangsu, China.
| |
Collapse
|
3
|
Coates-Park S, Rich JA, Stetler-Stevenson WG, Peeney D. The TIMP protein family: diverse roles in pathophysiology. Am J Physiol Cell Physiol 2024; 326:C917-C934. [PMID: 38284123 PMCID: PMC11193487 DOI: 10.1152/ajpcell.00699.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The tissue inhibitors of matrix metalloproteinases (TIMPs) are a family of four matrisome proteins classically defined by their roles as the primary endogenous inhibitors of metalloproteinases (MPs). Their functions however are not limited to MP inhibition, with each family member harboring numerous MP-independent biological functions that play key roles in processes such as inflammation and apoptosis. Because of these multifaceted functions, TIMPs have been cited in diverse pathophysiological contexts. Herein, we provide a comprehensive overview of the MP-dependent and -independent roles of TIMPs across a range of pathological conditions. The potential therapeutic and biomarker applications of TIMPs in these disease contexts are also considered, highlighting the biomedical promise of this complex and often misunderstood protein family.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - Joshua A Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| |
Collapse
|
4
|
Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy. Int J Mol Sci 2022; 23:ijms232214231. [PMID: 36430707 PMCID: PMC9696176 DOI: 10.3390/ijms232214231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular disorder caused by mutations in tissue Inhibitor of the metalloproteinase-3 (TIMP3) gene with the onset of symptoms including choroidal neovascularization as early as the second decade of life. We have previously reported that wild-type TIMP3 is an endogenous angiogenesis inhibitor that inhibits Vascular Endothelial Growth Factor (VEGF)-mediated signaling in endothelial cells. In contrast, SFD-related S179C-TIMP3 when expressed in endothelial cells, does not have angiogenesis-inhibitory properties. To evaluate if this is a common feature of TIMP3 mutants associated with SFD, we examined and compared endothelial cells expressing S179C, Y191C and S204C TIMP3 mutants for their angiogenesis-inhibitory function. Western blot analysis, zymography and reverse zymography and migration assays were utilized to evaluate TIMP3 protein, Matrix Metalloproteinase (MMP) and MMP inhibitory activity, VEGF signaling and in vitro migration in endothelial cells expressing (VEGF receptor-2 (VEGFR-2) and wild-type TIMP3 or mutant-TIMP3. We demonstrate that mutant S179C, Y191C- and S204C-TIMP3 all show increased glycosylation and multimerization/aggregation of the TIMP3 protein. In addition, endothelial cells expressing TIMP3 mutations show increased angiogenic activities and elevated VEGFR-2. Removal of N-glycosylation by mutation of Asn184, the only potential N-glycosylation site in mutant TIMP3, resulted in increased aggregation of TIMP3, further upregulation of VEGFR-2, VEGF-induced phosphorylation of VEGFR2 and VEGF-mediated migration concomitant with reduced MMP inhibitory activity. These results suggest that even though mutant TIMP3 proteins are more glycosylated, post-translational deglycosylation may play a critical role in the aggregation of mutant TIMP3 and contribute to the pathogenesis of SFD. The identification of factors that might contribute to changes in the glycome of patients with SFD will be useful. Future studies will evaluate whether variations in the glycosylation of mutant TIMP3 proteins are contributing to the severity of the disease.
Collapse
|
5
|
Costa S, Ragusa MA, Lo Buglio G, Scilabra SD, Nicosia A. The Repertoire of Tissue Inhibitors of Metalloproteases: Evolution, Regulation of Extracellular Matrix Proteolysis, Engineering and Therapeutic Challenges. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081145. [PMID: 36013323 PMCID: PMC9409782 DOI: 10.3390/life12081145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Tissue inhibitors of metalloproteases (TIMPs) belong to a fascinating protein family expressed in all Metazoa. They act as regulators of the turnover of the extracellular matrix, and they are consistently involved in essential processes. Herein, we recapitulate the main activities of mammalian TIMPs (TIMP1-4) in the control of extracellular-matrix degradation and pathologies associated with aberrant proteostasis. We delineate the activity of TIMPs in the control of extracellular matrix (ECM) homeostasis and discuss the diversity of TIMPs across metazoans taking into account the emergence of the components of the ECM during evolution. Thus, the TIMP repertoire herein analysed includes the homologues from cnidarians, which are coeval with the origins of ECM components; protostomes (molluscs, arthropods and nematodes); and deuterostomes (echinoderms and vertebrates). Several questions, including the maintenance of the structure despite low sequence similarity and the strategies for TIMP engineering, shed light on the possibility to use recombinant TIMPs integrating unique features and binding selectivity for therapeutic applications in the treatment of inflammatory pathologies.
Collapse
Affiliation(s)
- Salvatore Costa
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.L.B.)
| | - Maria Antonietta Ragusa
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.L.B.)
| | - Gabriele Lo Buglio
- Department of “Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche” (STEBICEF), University of Palermo, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.L.B.)
| | - Simone Dario Scilabra
- Proteomics Group of Fondazione Ri.MED, Research Department IRCCS ISMETT, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, Via E. Tricomi 5, 90127 Palermo, Italy;
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation—National Research Council (IRIB-CNR), 90146 Palermo, Italy
- Correspondence:
| |
Collapse
|