1
|
Fang Y, Hao W, Xiong Z. On-orbit 3D bioprinting for tumor modeling in space. Trends Biotechnol 2025:S0167-7799(25)00125-8. [PMID: 40240223 DOI: 10.1016/j.tibtech.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
On-orbit 3D bioprinting offers a more accurate replication of complex tumor environments under space conditions than current 2D and 3D cell models. This technology holds great promise for uncovering regulatory pathways of tumorigenesis and tumor suppression in space, thus accelerating the development of innovative cancer treatments on Earth.
Collapse
Affiliation(s)
- Yongcong Fang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Tribology in Advanced Equipment, Beijing 100084, China; State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Beijing, 100084, China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, PR China; 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, PR China.
| | - Wenshuai Hao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, PR China; 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, PR China
| | - Zhuo Xiong
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Beijing, 100084, China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, PR China; 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, PR China.
| |
Collapse
|
2
|
Grimm D, Corydon TJ, Sahana J, González-Torres LF, Kraus A, Marchal S, Wise PM, Simonsen U, Krüger M. Recent studies of the effects of microgravity on cancer cells and the development of 3D multicellular cancer spheroids. Stem Cells Transl Med 2025; 14:szaf008. [PMID: 40099549 PMCID: PMC11914975 DOI: 10.1093/stcltm/szaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/30/2025] [Indexed: 03/20/2025] Open
Abstract
The still young and developing space age, characterized by lunar and Martian exploration and the vision of extraterrestrial settlements, presents a unique environment to study the impact of microgravity (µg) on human physiology and disease development. Cancer research is currently a key focus of international space science, as µg fundamentally impacts cellular processes like differentiation, adhesion, migration, proliferation, survival, cell death, or growth of cancer cells as well as the cytoskeleton and the extracellular matrix (ECM). By creating three-dimensional (3D) tumor models in a µg-environment, like multicellular spheroids (MCS), researchers can expedite drug discovery and development, reducing the need for animal testing. This concise review analyses the latest knowledge on the influence of µg on cancer cells and MCS formation. We will focus on cells from brain tumors, lung, breast, thyroid, prostate, gastrointestinal, and skin cancer exposed to real (r-) and simulated (s-) µg-conditions.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke-University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Luis Fernando González-Torres
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
| | - Armin Kraus
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
| | - Petra M Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke-University, 39106 Magdeburg, Germany
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, United States
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke-University, 39106 Magdeburg, Germany
- Research Group "Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen" (MARS), Otto-von-Guericke-University, 39106 Magdeburg, Germany
| |
Collapse
|
3
|
Barkia B, Sandt V, Melnik D, Cortés-Sánchez JL, Marchal S, Baselet B, Baatout S, Sahana J, Grimm D, Wehland M, Schulz H, Infanger M, Kraus A, Krüger M. The Formation of Stable Lung Tumor Spheroids during Random Positioning Involves Increased Estrogen Sensitivity. Biomolecules 2024; 14:1292. [PMID: 39456226 PMCID: PMC11506229 DOI: 10.3390/biom14101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The formation of tumor spheroids on the random positioning machine (RPM) is a complex and important process, as it enables the study of metastasis ex vivo. However, this process is not yet understood in detail. In this study, we compared the RPM-induced spheroid formation of two cell types of lung carcinoma (NCI-H1703 squamous cell carcinoma cells and Calu-3 adenocarcinoma cells). While NCI-H1703 cells were mainly present as spheroids after 3 days of random positioning, Calu-3 cells remained predominantly as a cell layer. We found that two-dimensional-growing Calu-3 cells have less mucin-1, further downregulate their expression on the RPM and therefore exhibit a higher adhesiveness. In addition, we observed that Calu-3 cells can form spheroids, but they are unstable due to an imbalanced ratio of adhesion proteins (β1-integrin, E-cadherin) and anti-adhesion proteins (mucin-1) and are likely to disintegrate in the shear environment of the RPM. RPM-exposed Calu-3 cells showed a strongly upregulated expression of the estrogen receptor alpha gene ESR1. In the presence of 17β-estradiol or phenol red, more stable Calu-3 spheroids were formed, which was presumably related to an increased amount of E-cadherin in the cell aggregates. Thus, RPM-induced tumor spheroid formation depends not solely on cell-type-specific properties but also on the complex interplay between the mechanical influences of the RPM and, to some extent, the chemical composition of the medium used during the experiments.
Collapse
Affiliation(s)
- Balkis Barkia
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - Viviann Sandt
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre SCK-CEN, 2400 Mol, Belgium; (B.B.); (S.B.)
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK-CEN, 2400 Mol, Belgium; (B.B.); (S.B.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jayashree Sahana
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark; (J.S.); (D.G.)
| | - Daniela Grimm
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark; (J.S.); (D.G.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
| | - Manfred Infanger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
- Clinic for Plastic, Aesthetic and Hand Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Armin Kraus
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
- Clinic for Plastic, Aesthetic and Hand Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (B.B.); (V.S.); (D.M.); (J.L.C.-S.); (S.M.); (M.W.); (H.S.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (A.K.)
| |
Collapse
|
4
|
Žukauskaitė K, Li M, Horvath A, Jarmalaitė S, Stadlbauer V. Cellular and Microbial In Vitro Modelling of Gastrointestinal Cancer. Cancers (Basel) 2024; 16:3113. [PMID: 39272971 PMCID: PMC11394127 DOI: 10.3390/cancers16173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Human diseases are multifaceted, starting with alterations at the cellular level, damaging organs and their functions, and disturbing interactions and immune responses. In vitro systems offer clarity and standardisation, which are crucial for effectively modelling disease. These models aim not to replicate every disease aspect but to dissect specific ones with precision. Controlled environments allow researchers to isolate key variables, eliminate confounding factors and elucidate disease mechanisms more clearly. Technological progress has rapidly advanced model systems. Initially, 2D cell culture models explored fundamental cell interactions. The transition to 3D cell cultures and organoids enabled more life-like tissue architecture and enhanced intercellular interactions. Advanced bioreactor-based devices now recreate the physicochemical environments of specific organs, simulating features like perfusion and the gastrointestinal tract's mucus layer, enhancing physiological relevance. These systems have been simplified and adapted for high-throughput research, marking significant progress. This review focuses on in vitro systems for modelling gastrointestinal tract cancer and the side effects of cancer treatment. While cell cultures and in vivo models are invaluable, our main emphasis is on bioreactor-based in vitro modelling systems that include the gut microbiome.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Melissa Li
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Biotech Campus Tulln, Fachhochschule Wiener Neustadt, 3430 Tulln, Austria
| | - Angela Horvath
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| |
Collapse
|
5
|
Mo X, Zhang Y, Wang Z, Zhou X, Zhang Z, Fang Y, Fan Z, Guo Y, Zhang T, Xiong Z. Satellite-Based On-Orbit Printing of 3D Tumor Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309618. [PMID: 38145905 DOI: 10.1002/adma.202309618] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Space three dimension (3D) bioprinting provides a precise and bionic tumor model for evaluating the compound effect of the space environment on tumors, thereby providing insight into the progress of the disease and potential treatments. However, space 3D bioprinting faces several challenges, including prelaunch uncertainty, possible liquid leakage, long-term culture in space, automatic equipment control, data acquisition, and transmission. Here, a novel satellite-based 3D bioprinting device with high structural strength, small volume, and low weight (<6 kg) is developed. A microgel-based biphasic thermosensitive bioink and suspension medium that supports the on-orbit printing and in situ culture of complex tumor models is developed. An intelligent control algorithm that enables the automatic control of 3D printing, autofocusing, fluorescence imaging, and data transfer back to the ground is developed. To the authors' knowledge, this is the first time that on-orbit printing of tumor models is achieved in space with stable morphology and moderate viability via a satellite. It is found that 3D tumor models are more sensitive to antitumor drugs in space than on Earth. This study opens up a new avenue for 3D bioprinting in space and offers new possibilities for future research in space life science and medicine.
Collapse
Affiliation(s)
- Xingwu Mo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Xianhao Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhenrui Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zilian Fan
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Yihan Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, P. R. China
- "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Liu YY, Wu DK, Chen JB, Tang YM, Jiang F. Advances in the study of gastric organoids as disease models. World J Gastrointest Oncol 2024; 16:1725-1736. [PMID: 38764838 PMCID: PMC11099456 DOI: 10.4251/wjgo.v16.i5.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
Gastric organoids are models created in the laboratory using stem cells and sophisticated three-dimensional cell culture techniques. These models have shown great promise in providing valuable insights into gastric physiology and advanced disease research. This review comprehensively summarizes and analyzes the research advances in culture methods and techniques for adult stem cells and induced pluripotent stem cell-derived organoids, and patient-derived organoids. The potential value of gastric organoids in studying the pathogenesis of stomach-related diseases and facilitating drug screening is initially discussed. The construction of gastric organoids involves several key steps, including cell extraction and culture, three-dimensional structure formation, and functional expression. Simulating the structure and function of the human stomach by disease modeling with gastric organoids provides a platform to study the mechanism of gastric cancer induction by Helicobacter pylori. In addition, in drug screening and development, gastric organoids can be used as a key tool to evaluate drug efficacy and toxicity in preclinical trials. They can also be used for precision medicine according to the specific conditions of patients with gastric cancer, to assess drug resistance, and to predict the possibility of adverse reactions. However, despite the impressive progress in the field of gastric organoids, there are still many unknowns that need to be addressed, especially in the field of regenerative medicine. Meanwhile, the reproducibility and consistency of organoid cultures are major challenges that must be overcome. These challenges have had a significant impact on the development of gastric organoids. Nonetheless, as technology continues to advance, we can foresee more comprehensive research in the construction of gastric organoids. Such research will provide better solutions for the treatment of stomach-related diseases and personalized medicine.
Collapse
Affiliation(s)
- Yi-Yang Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - De-Kun Wu
- Teaching Experiment and Training Center, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Ji-Bing Chen
- Central Laboratory, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - You-Ming Tang
- Department of Digestive Disease, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Feng Jiang
- AIDS Research Center, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Vora PM, Prabhu S. Exploring the influence of microgravity on chemotherapeutic drug response in cancer: Unveiling new perspectives. J Cell Mol Med 2024; 28:e18347. [PMID: 38693857 PMCID: PMC11063729 DOI: 10.1111/jcmm.18347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Microgravity, an altered gravity condition prevailing in space, has been reported to have a profound impact on human health. Researchers are very keen to comprehensively investigate the impact of microgravity and its intricate involvement in inducing physiological changes. Evidenced transformations were observed in the internal architecture including cytoskeletal organization and cell membrane morphology. These alterations can significantly influence cellular function, signalling pathways and overall cellular behaviour. Further, microgravity has been reported to alter in the expression profile of genes and metabolic pathways related to cellular processes, signalling cascades and structural proteins in cancer cells contributing to the overall changes in the cellular architecture. To investigate the effect of microgravity on cellular and molecular levels numerous ground-based simulation systems employing both in vitro and in vivo models are used. Recently, researchers have explored the possibility of leveraging microgravity to potentially modulate cancer cells against chemotherapy. These findings hold promise for both understanding fundamental processes and could potentially lead to the development of more effective, personalized and innovative approaches in therapeutic advancements against cancer.
Collapse
Affiliation(s)
- Preksha Manish Vora
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
| | - Sudharshan Prabhu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
| |
Collapse
|
8
|
Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D. Omics Studies of Tumor Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:926. [PMID: 38255998 PMCID: PMC10815863 DOI: 10.3390/ijms25020926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is defined as a group of diseases characterized by abnormal cell growth, expansion, and progression with metastasis. Various signaling pathways are involved in its development. Malignant tumors exhibit a high morbidity and mortality. Cancer research increased our knowledge about some of the underlying mechanisms, but to this day, our understanding of this disease is unclear. High throughput omics technology and bioinformatics were successful in detecting some of the unknown cancer mechanisms. However, novel groundbreaking research and ideas are necessary. A stay in orbit causes biochemical and molecular biological changes in human cancer cells which are first, and above all, due to microgravity (µg). The µg-environment provides conditions that are not reachable on Earth, which allow researchers to focus on signaling pathways controlling cell growth and metastasis. Cancer research in space already demonstrated how cancer cell-exposure to µg influenced several biological processes being involved in cancer. This novel approach has the potential to fight cancer and to develop future cancer strategies. Space research has been shown to impact biological processes in cancer cells like proliferation, apoptosis, cell survival, adhesion, migration, the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors, among others. This concise review focuses on publications related to genetic, transcriptional, epigenetic, proteomic, and metabolomic studies on tumor cells exposed to real space conditions or to simulated µg using simulation devices. We discuss all omics studies investigating different tumor cell types from the brain and hematological system, sarcomas, as well as thyroid, prostate, breast, gynecologic, gastrointestinal, and lung cancers, in order to gain new and innovative ideas for understanding the basic biology of cancer.
Collapse
Affiliation(s)
- Jenny Graf
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| | - Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Simon L. Wuest
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation (UZH Space Hub), University Zurich, 8006 Zurich, Switzerland
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Armin Kraus
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Manfred Infanger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
9
|
McKinley S, Taylor A, Peeples C, Jacob M, Khaparde G, Walter Y, Ekpenyong A. Simulated Microgravity-Induced Changes to Drug Response in Cancer Cells Quantified Using Fluorescence Morphometry. Life (Basel) 2023; 13:1683. [PMID: 37629540 PMCID: PMC10455503 DOI: 10.3390/life13081683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Unlike plants that have special gravity-sensing cells, such special cells in animals are yet to be discovered. However, microgravity, the condition of apparent weightlessness, causes bone, muscular and immune system dysfunctions in astronauts following spaceflights. Decades of investigations show correlations between these organ and system-level dysfunctions with changes induced at the cellular level both by simulated microgravity as well as microgravity conditions in outer space. Changes in single bone, muscle and immune cells include morphological abnormalities, altered gene expression, protein expression, metabolic pathways and signaling pathways. These suggest that human cells mount some response to microgravity. However, the implications of such adjustments on many cellular functions and responses are not clear. Here, we addressed the question whether microgravity induces alterations to drug response in cancer cells. We used both adherent cancer cells (T98G) and cancer cells in suspension (K562) to confirm the known effects of simulated microgravity and then treated the K562 cells with common cancer drugs (hydroxyurea and paclitaxel) following 48 h of exposure to simulated microgravity via a NASA-developed rotary cell culture system. Through fluorescence-guided morphometry, we found that microgravity abolished a significant reduction (p < 0.01) in the nuclear-to-cytoplasm ratio of cancer cells treated with hydroxyurea. Our results call for more studies on the impact of microgravity on cellular drug response, in light of the growing need for space medicine, as space exploration grows.
Collapse
Affiliation(s)
- Spencer McKinley
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Adam Taylor
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Conner Peeples
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| | - Megha Jacob
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Gargee Khaparde
- Biology Department, Creighton University, Omaha, NE 68178, USA; (S.M.); (A.T.); (M.J.); (G.K.)
| | - Yohan Walter
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| | - Andrew Ekpenyong
- Physics Department, Creighton University, Omaha, NE 68178, USA; (C.P.); (Y.W.)
| |
Collapse
|
10
|
Corydon TJ, Schulz H, Richter P, Strauch SM, Böhmer M, Ricciardi DA, Wehland M, Krüger M, Erzinger GS, Lebert M, Infanger M, Wise PM, Grimm D. Current Knowledge about the Impact of Microgravity on Gene Regulation. Cells 2023; 12:cells12071043. [PMID: 37048115 PMCID: PMC10093652 DOI: 10.3390/cells12071043] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Microgravity (µg) has a massive impact on the health of space explorers. Microgravity changes the proliferation, differentiation, and growth of cells. As crewed spaceflights into deep space are being planned along with the commercialization of space travelling, researchers have focused on gene regulation in cells and organisms exposed to real (r-) and simulated (s-) µg. In particular, cancer and metastasis research benefits from the findings obtained under µg conditions. Gene regulation is a key factor in a cell or an organism’s ability to sustain life and respond to environmental changes. It is a universal process to control the amount, location, and timing in which genes are expressed. In this review, we provide an overview of µg-induced changes in the numerous mechanisms involved in gene regulation, including regulatory proteins, microRNAs, and the chemical modification of DNA. In particular, we discuss the current knowledge about the impact of microgravity on gene regulation in different types of bacteria, protists, fungi, animals, humans, and cells with a focus on the brain, eye, endothelium, immune system, cartilage, muscle, bone, and various cancers as well as recent findings in plants. Importantly, the obtained data clearly imply that µg experiments can support translational medicine on Earth.
Collapse
Affiliation(s)
- Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus, Denmark
- Correspondence: ; Tel.: +45-28-992-179
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Maik Böhmer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Dario A. Ricciardi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438 Frankfurt am Main, Germany
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gilmar S. Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Hoegh Guldbergs Gade 10, 8000 Aarhus, Denmark
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Rodolfo M, Huber V, Cossa M, Gallino G, Leone BE, Vallacchi V, Rivoltini L, Vergani E. 3D tumor explant as a novel platform to investigate therapeutic pathways and predictive biomarkers in cancer patients. Front Immunol 2022; 13:1068091. [PMID: 36591316 PMCID: PMC9794575 DOI: 10.3389/fimmu.2022.1068091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors can induce durable clinical responses in different human malignancies but the number of responding patients remains globally modest. The limited therapeutic efficacy of ICI depends on multiple factors, among which the immune suppressive features of the tumor microenvironment play a key role. For this reason, experimental models that enable dissection of the immune-hostile tumor milieu components are required to unravel how to overcome resistance and obtain full-fledged anti-tumor immunity. Recent evidence supports the usefulness of 3D ex vivo systems in retaining features of tumor microenvironment to elucidate molecular and immunologic mechanisms of response and resistance to immune checkpoint blockade. In this perspective article we discuss the recent advances in patient-derived 3D tumor models and their potential in support of treatment decision making in clinical setting. We will also share our experience with dynamic bioreactor tumor explant culture of samples from melanoma and sarcoma patients as a reliable and promising platform to unravel immune responses to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Monica Rodolfo
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy,*Correspondence: Monica Rodolfo,
| | - Veronica Huber
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Cossa
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianfrancesco Gallino
- Melanoma and Sarcoma Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio E. Leone
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Viviana Vallacchi
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Department of Experimental Oncology, Translational Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|