1
|
Li H, Xu Y, Wang Y, Cui Y, Lin J, Zhou Y, Tang S, Zhang Y, Hao H, Nie Z, Wang X, Tang R. Material-engineered bioartificial microorganisms enabling efficient scavenging of waterborne viruses. Nat Commun 2023; 14:4658. [PMID: 37537158 PMCID: PMC10400550 DOI: 10.1038/s41467-023-40397-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Material-based tactics have attracted extensive attention in driving the functional evolution of organisms. In aiming to design steerable bioartificial organisms to scavenge pathogenic waterborne viruses, we engineer Paramecium caudatum (Para), single-celled microorganisms, with a semiartificial and specific virus-scavenging organelle (VSO). Fe3O4 magnetic nanoparticles modified with a virus-capture antibody (MNPs@Ab) are integrated into the vacuoles of Para during feeding to produce VSOs, which persist inside Para without impairing their swimming ability. Compared with natural Para, which has no capture specificity and shows inefficient inactivation, the VSO-engineered Para (E-Para) specifically gathers waterborne viruses and confines them inside the VSOs, where the captured viruses are completely deactivated because the peroxidase-like nano-Fe3O4 produces virus-killing hydroxyl radicals (•OH) within acidic environment of VSO. After treatment, magnetized E-Para is readily recycled and reused, avoiding further contamination. Materials-based artificial organelles convert natural Para into a living virus scavenger, facilitating waterborne virus clearance without extra energy consumption.
Collapse
Affiliation(s)
- Huixin Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanpeng Xu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiake Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuemin Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuling Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haibin Hao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zihao Nie
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Karczewska M, Strzelecki P, Szalewska-Pałasz A, Nowicki D. How to Tackle Bacteriophages: The Review of Approaches with Mechanistic Insight. Int J Mol Sci 2023; 24:ijms24054447. [PMID: 36901878 PMCID: PMC10003480 DOI: 10.3390/ijms24054447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Bacteriophage-based applications have a renaissance today, increasingly marking their use in industry, medicine, food processing, biotechnology, and more. However, phages are considered resistant to various harsh environmental conditions; besides, they are characterized by high intra-group variability. Phage-related contaminations may therefore pose new challenges in the future due to the wider use of phages in industry and health care. Therefore, in this review, we summarize the current knowledge of bacteriophage disinfection methods, as well as highlight new technologies and approaches. We discuss the need for systematic solutions to improve bacteriophage control, taking into account their structural and environmental diversity.
Collapse
Affiliation(s)
- Monika Karczewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Patryk Strzelecki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR7504, 23 rue du Loess, CEDEX 2, F-67034 Strasbourg, France
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-523-6065
| |
Collapse
|
3
|
Armanious A, Mezzenga R. A Roadmap for Building Waterborne Virus Traps. JACS AU 2022; 2:2205-2221. [PMID: 36311831 PMCID: PMC9597599 DOI: 10.1021/jacsau.2c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Outbreaks of waterborne viruses pose a massive threat to human health, claiming the lives of hundreds of thousands of people every year. Adsorption-based filtration offers a promising facile and environmentally friendly approach to help provide safe drinking water to a world population of almost 8 billion people, particularly in communities that lack the infrastructure for large-scale facilities. The search for a material that can effectively trap viruses has been mainly driven by a top-down approach, in which old and new materials have been tested for this purpose. Despite substantial advances, finding a material that achieves this crucial goal and meets all associated challenges remains elusive. We suggest that the road forward should strongly rely on a complementary bottom-up approach based on our fundamental understanding of virus interactions at interfaces. We review the state-of-the-art physicochemical knowledge of the forces that drive the adsorption of viruses at solid-water interfaces. Compared to other nanometric colloids, viruses have heterogeneous surface chemistry and diverse morphologies. We advocate that advancing our understanding of virus interactions would require describing their physicochemical properties using novel descriptors that reflect their heterogeneity and diversity. Several other related topics are also addressed, including the effect of coadsorbates on virus adsorption, virus inactivation at interfaces, and experimental considerations to ensure well-grounded research results. We finally conclude with selected examples of materials that made notable advances in the field.
Collapse
Affiliation(s)
- Antonius Armanious
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
| | - Raffaele Mezzenga
- Department
of Health Sciences and Technology, ETH Zurich, Zurich8092, Switzerland
- Department
of Materials, ETH Zurich, Zurich8093, Switzerland
| |
Collapse
|
4
|
Kazantsev SO, Lozhkomoev AS, Rodkevich NG. Preparation and Adsorption Properties of Nanostructured Composites Derived from Al/Fe Nanoparticles with Respect to Arsenic. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3177. [PMID: 36144963 PMCID: PMC9504595 DOI: 10.3390/nano12183177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Composite nanostructures containing iron in different forms exhibit a high adsorption capacity with respect to arsenic. The aim of our study was to investigate the adsorption activity of an adsorbent composite prepared by the oxidation of bimetallic Al/Fe nanoparticles under different conditions. Depending on the oxidation conditions, nanostructures with different morphologies in the form of nanosheets, nanoplates and nanorods with different compositions and textural characteristics could be obtained. The nanostructures obtained had a positive zeta potential and were characterized by a high specific surface area: 330 m2/g for the AlOOH/FeAl2 nanosheets; 75 m2/g for the AlOOH/Fe2O3/FeAl2 nanoplates; and 43 m2/g for the Al(OH)3/FeAl2 nanorods. The distribution of an FeAl2 intermetallide over the surface of the AlOOH nanostructures led to an increase in arsenic adsorption of 25% for the AlOOH/FeAl2 nanosheets and of 34% for the AlOOH/Fe2O3/FeAl2 nanoplates and Al(OH)3/FeAl2 nanorods. The adsorption isotherms matched most preciously to the Freundlich model. This fact indicated the energy heterogeneity of the adsorbent surface and multilayer adsorption. The nanostructures studied can be used to purify water contaminated with arsenic.
Collapse
|