1
|
Saremi Poor A, Davaeil B, Ramezanpour M, Shafiee Ardestani M, Moosavi-Movahedi AA, Asghari SM. Nanoparticle Albumin-Bound Bortezomib: Enhanced Antitumor Efficacy and Tumor Accumulation in Breast Cancer Therapy. Mol Pharm 2025. [PMID: 40223780 DOI: 10.1021/acs.molpharmaceut.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Nanoparticle albumin-bound (NAB) formulations are emerging as a viable strategy for the intravenous delivery of poorly water-soluble drugs. This study aims to improve the therapeutic profile of Bortezomib (BTZ), addressing its low solubility and significant systemic toxicity through the development of NAB-BTZ nanoparticles. The synthesized nanoparticles exhibited an average size of 296.47 ± 10 nm and a high drug encapsulation efficiency of 75%, and a drug loading of 10%. NAB-BTZ displayed a controlled, pH-sensitive release profile, with 59% release at pH 5.4 (mimicking tumor environments) and 46% at pH 7.4 after 12 h. In vitro assays demonstrated that NAB-BTZ significantly reduced the viability of 4T1 mammary carcinoma cells in a dose- and time-dependent manner, increasing late apoptosis from 6% to 54% after 48 h, compared to 24% for free BTZ. At molecular level, NAB-BTZ induced apoptosis by upregulating p53 and Bax, downregulating Bcl-2, and activating caspases 3 and 7. In vivo tests in a murine 4T1 breast cancer model showed that NAB-BTZ substantially inhibited tumor growth, achieving an average tumor volume of 916 mm3 by day 31 versus 1400 mm3 for free BTZ, leading to an improved survival rate of 100% compared to 83% in the BTZ group. Technetium-99m (99mTc) labeling and SPECT imaging confirmed enhanced targeting capability, showing preferential accumulation of NAB-BTZ in tumor sites compared to free BTZ. These findings suggest that NAB-BTZ not only improves antitumor efficacy but also enhances its safety profile, underscoring its clinical potential in breast cancer therapy.
Collapse
Affiliation(s)
- Anita Saremi Poor
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, 1417614411 Tehran, Iran
| | - Bagher Davaeil
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, 1417614411 Tehran, Iran
| | - Marziyeh Ramezanpour
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, 1417614411 Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 1461884513 Tehran, Iran
- Research Center for Molecular Medicine, Shariati Hospital, North Kargar Avenue, 1411713135 Tehran, Iran
| | | | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, 1417614411 Tehran, Iran
| |
Collapse
|
2
|
Ramalho MJ, Torres ID, Loureiro JA, Lima J, Pereira MC. Transferrin-Conjugated PLGA Nanoparticles for Co-Delivery of Temozolomide and Bortezomib to Glioblastoma Cells. ACS APPLIED NANO MATERIALS 2023; 6:14191-14203. [PMID: 37588263 PMCID: PMC10426337 DOI: 10.1021/acsanm.3c02122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma (GBM) represents almost half of primary brain tumors, and its standard treatment with the alkylating agent temozolomide (TMZ) is not curative. Treatment failure is partially related to intrinsic resistance mechanisms mediated by the O6-methylguanine-DNA methyltransferase (MGMT) protein, frequently overexpressed in GBM patients. Clinical trials have shown that the anticancer agent bortezomib (BTZ) can increase TMZ's therapeutic efficacy in GBM patients by downregulating MGMT expression. However, the clinical application of this therapeutic strategy has been stalled due to the high toxicity of the combined therapy. The co-delivery of TMZ and BTZ through nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) is proposed in this work, aiming to explore their synergistic effect while decreasing the drug's toxicity. The developed NPs were optimized by central composite design (CCD), then further conjugated with transferrin (Tf) to enhance their GBM targeting ability by targeting the blood-brain barrier (BBB) and the cancer cells. The obtained NPs exhibited suitable GBM cell delivery features (sizes lower than 200 nm, low polydispersity, and negative surface charge) and a controlled and sustained release for 20 days. The uptake and antiproliferative effect of the developed NPs were evaluated in in vitro human GBM models. The obtained results disclosed that the NPs are rapidly taken up by the GBM cells, promoting synergistic drug effects in inhibiting tumor cell survival and proliferation. This cytotoxicity was associated with significant cellular morphological changes. Additionally, the biocompatibility of unloaded NPs was evaluated in healthy brain cells, demonstrating the safety of the nanocarrier. These findings prove that co-delivery of BTZ and TMZ in Tf-conjugated PLGA NPs is a promising approach to treat GBM, overcoming the limitations of current therapeutic strategies, such as drug resistance and increased side effects.
Collapse
Affiliation(s)
- Maria João Ramalho
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês David Torres
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jorge Lima
- i3S—Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-10 135 Porto, Portugal
- Ipatimup—Instituto
de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho
45, 4200-135, Porto, Portugal
- Faculty
of Medicine of Porto University, Alameda
Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Santhosh PB, Tenev T, Šturm L, Ulrih NP, Genova J. Effects of Hydrophobic Gold Nanoparticles on Structure and Fluidity of SOPC Lipid Membranes. Int J Mol Sci 2023; 24:10226. [PMID: 37373371 DOI: 10.3390/ijms241210226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) are promising candidates in various biomedical applications such as sensors, imaging, and cancer therapy. Understanding the influence of AuNPs on lipid membranes is important to assure their safety in the biological environment and to improve their scope in nanomedicine. In this regard, the present study aimed to analyze the effects of different concentrations (0.5, 1, and 2 wt.%) of dodecanethiol functionalized hydrophobic AuNPs on the structure and fluidity of zwitterionic 1-stearoyl-2-oleoyl-sn-glycerol-3-phosphocholine (SOPC) lipid bilayer membranes using Fourier-transform infrared (FTIR) spectroscopy and fluorescent spectroscopy. The size of AuNPs was found to be 2.2 ± 1.1 nm using transmission electron microscopy. FTIR results have shown that the AuNPs induced a slight shift in methylene stretching bands, while the band positions of carbonyl and phosphate group stretching were unaffected. Temperature-dependent fluorescent anisotropy measurements showed that the incorporation of AuNPs up to 2 wt.% did not affect the lipid order in membranes. Overall, these results indicate that the hydrophobic AuNPs in the studied concentration did not cause any significant alterations in the structure and membrane fluidity, which suggests the suitability of these particles to form liposome-AuNP hybrids for diverse biomedical applications including drug delivery and therapy.
Collapse
Affiliation(s)
- Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Tihomir Tenev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Luka Šturm
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| |
Collapse
|
4
|
Bunea MC, Enache TA, Diculescu VC. In situ Electrochemical Evaluation of the Interaction of dsDNA with the Proteasome Inhibitor Anticancer Drug Bortezomib. Molecules 2023; 28:molecules28073277. [PMID: 37050039 PMCID: PMC10096380 DOI: 10.3390/molecules28073277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Bortezomib is an inhibitor of proteasomes and an anti-cancer drug. Although bortezomib is considered a safe drug, as confirmed by cytotoxicity assays, recent reports highlighted the possibility of interaction between bortezomib and cellular components, with detrimental long-term effects. The evaluation of the interaction between bortezomib and dsDNA was investigated in bulk solution and using a dsDNA electrochemical biosensor. The binding of bortezomib to dsDNA involved its electroactive centers and led to small morphological modifications in the dsDNA double helix, which were electrochemically identified through changes in the guanine and adenine residue oxidation peaks and confirmed by electrophoretic and spectrophotometric measurements. The redox product of bortezomib amino group oxidation was electrochemically generated in situ on the surface of the dsDNA electrochemical biosensor. The redox product of bortezomib was shown to interact primarily with guanine residues, preventing their oxidation and leading to the formation of bortezomib–guanine adducts, which was confirmed by control experiments with polyhomonucleotides electrochemical biosensors and mass spectrometry. An interaction mechanism between dsDNA and bortezomib is proposed, and the formation of the bortezomib redox product–guanine adduct explained.
Collapse
Affiliation(s)
| | - Teodor Adrian Enache
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | | |
Collapse
|