1
|
Shah J, Patel D, Rananavare D, Hudson D, Tran M, Schloss R, Langrana N, Berthiaume F, Kumar S. Recent Advancements in Chitosan-Based Biomaterials for Wound Healing. J Funct Biomater 2025; 16:45. [PMID: 39997579 PMCID: PMC11857049 DOI: 10.3390/jfb16020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Chitosan is a positively charged natural polymer with several properties conducive to wound-healing applications, such as biodegradability, structural integrity, hydrophilicity, adhesiveness to tissue, and bacteriostatic potential. Along with other mechanical properties, some of the properties discussed in this review are antibacterial properties, mucoadhesive properties, biocompatibility, high fluid absorption capacity, and anti-inflammatory response. Chitosan forms stable complexes with oppositely charged polymers, arising from electrostatic interactions between (+) amino groups of chitosan and (-) groups of other polymers. These polyelectrolyte complexes (PECs) can be manufactured using various materials and methods, which brings a diversity of formulations and properties that can be optimized for specific wound healing as well as other applications. For example, chitosan-based PEC can be made into dressings/films, hydrogels, and membranes. There are various pros and cons associated with manufacturing the dressings; for instance, a layer-by-layer casting technique can optimize the nanoparticle release and affect the mechanical strength due to the formation of a heterostructure. Furthermore, chitosan's molecular weight and degree of deacetylation, as well as the nature of the negatively charged biomaterial with which it is cross-linked, are major factors that govern the mechanical properties and biodegradation kinetics of the PEC dressing. The use of chitosan in wound care products is forecasted to drive the growth of the global chitosan market, which is expected to increase by approximately 14.3% within the next decade. This growth is driven by products such as chitoderm-containing ointments, which provide scaffolding for skin cell regeneration. Despite significant advancements, there remains a critical gap in translating chitosan-based biomaterials from research to clinical applications.
Collapse
|
2
|
Bastos MDR, Dotta TC, Kubata BR, do Nascimento C, Macedo AP, de Figueiredo FAT, Rocha MM, Peixoto MPG, Ferreira MP, de Freitas O, Pedrazzi V. Metronidazole Modified-Release Therapy Using Two Different Polymeric Systems Gels or Films: Clinical Study for the Treatment of Periodontitis. Pharmaceutics 2024; 16:1108. [PMID: 39339146 PMCID: PMC11434671 DOI: 10.3390/pharmaceutics16091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
This study evaluated the efficacy of semisolid systems (gels) and films containing a combination of metronidazole (MTZ) and metronidazole benzoate after scaling and root-planing (SRP) for periodontitis. In total, 45 patients with stage I or II periodontitis were enrolled and divided into 3 groups: 1-SRP-control; 2-SRP + Film with MTZ; 3-SRP + Gel with MTZ. The pH of gingival crevicular fluid (GCF) before/after treatments, MTZ concentrations, and drug release using high-performance liquid chromatography were investigated. The effects were evaluated by longitudinal monitoring of clinical parameters (probing depth-PD, clinical attachment level-CAL, and bleeding on probing-BP). MTZ and MTZ-benzoate concentrations in the periodontal pocket and pH showed no statistical difference after application. SRP + Gel presented the lowest CAL values. For SRP + Film and SRP + Gel, higher PD values were observed at T0 compared to all groups. A relevant reduction in BP was observed in SRP + Film and SRP + Gel groups at all times compared to T0. Both therapies improved periodontal health compared to SRP alone, reducing PD and BP, and increasing CAL for the gel group, suggesting they are promising for periodontal disease treatment.
Collapse
Affiliation(s)
- Mônica Danielle Ribeiro Bastos
- Department of Dental Materials and Prosthodontics Ribeirão Preto, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil; (M.D.R.B.); (B.R.K.); (C.d.N.); (A.P.M.); (F.A.T.d.F.); (M.M.R.); (V.P.)
| | - Tatiane Cristina Dotta
- Department of Dental Materials and Prosthodontics Ribeirão Preto, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil; (M.D.R.B.); (B.R.K.); (C.d.N.); (A.P.M.); (F.A.T.d.F.); (M.M.R.); (V.P.)
| | - Beatriz Roque Kubata
- Department of Dental Materials and Prosthodontics Ribeirão Preto, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil; (M.D.R.B.); (B.R.K.); (C.d.N.); (A.P.M.); (F.A.T.d.F.); (M.M.R.); (V.P.)
| | - Cássio do Nascimento
- Department of Dental Materials and Prosthodontics Ribeirão Preto, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil; (M.D.R.B.); (B.R.K.); (C.d.N.); (A.P.M.); (F.A.T.d.F.); (M.M.R.); (V.P.)
| | - Ana Paula Macedo
- Department of Dental Materials and Prosthodontics Ribeirão Preto, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil; (M.D.R.B.); (B.R.K.); (C.d.N.); (A.P.M.); (F.A.T.d.F.); (M.M.R.); (V.P.)
| | - Fellipe Augusto Tocchini de Figueiredo
- Department of Dental Materials and Prosthodontics Ribeirão Preto, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil; (M.D.R.B.); (B.R.K.); (C.d.N.); (A.P.M.); (F.A.T.d.F.); (M.M.R.); (V.P.)
| | - Millena Mangueira Rocha
- Department of Dental Materials and Prosthodontics Ribeirão Preto, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil; (M.D.R.B.); (B.R.K.); (C.d.N.); (A.P.M.); (F.A.T.d.F.); (M.M.R.); (V.P.)
| | - Maria Paula Garofo Peixoto
- Department of Pharmaceutical Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 14040-900, Brazil; (M.P.G.P.); (M.P.F.); (O.d.F.)
| | - Maíra Peres Ferreira
- Department of Pharmaceutical Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 14040-900, Brazil; (M.P.G.P.); (M.P.F.); (O.d.F.)
| | - Osvaldo de Freitas
- Department of Pharmaceutical Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 14040-900, Brazil; (M.P.G.P.); (M.P.F.); (O.d.F.)
| | - Vinicius Pedrazzi
- Department of Dental Materials and Prosthodontics Ribeirão Preto, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo 14040-904, Brazil; (M.D.R.B.); (B.R.K.); (C.d.N.); (A.P.M.); (F.A.T.d.F.); (M.M.R.); (V.P.)
| |
Collapse
|
3
|
MohanaSundaram A, Gohil NV, Etekochay MO, Patel P, Gurajala S, Sathanantham ST, Nsengiyumva M, Kumar S, Emran TB. Mycobacterium tuberculosis : a new hitchhiker in the etiopathogenesis of periodontitis. Int J Surg 2024; 110:3606-3616. [PMID: 38231241 PMCID: PMC11175725 DOI: 10.1097/js9.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Periodontitis, a chronic inflammatory disease of the gums affects both the ligament and alveolar bone. A severe form of periodontal disease affects a strikingly high number of one billion adults globally. The disease permutes both the soft and hard tissues of the oral cavity leading to localized and systemic diseases. Periodontitis has a deleterious impact on systemic health causing diabetes, cardiovascular diseases (CVD), and other disease. The cause of the enhanced inflammatory process is due to dysbiosis and an unregulated immune response. Innate immune response and T cells trigger uninhibited cytokine release causing an unwarranted inflammatory response. The RANK- RANKL interaction between osteoblasts, immune cells, and progenitor osteoclasts results in the maturation of osteoclasts, which promote bone resorption. It is well established that dysbiosis of the oral cavity has been implicated in periodontitis. But emerging reports suggest that the pulmonary pathogen, Mycobacterium tuberculosis (Mtb), causes extrapulmonary diseases such as periodontitis. Many clinical case reports advocate the involvement of Mtb in periodontitis, which poses a threat with the surge of tuberculosis in HIV and other immunocompromised individuals. Fostering a better understanding of the mechanism, causative agents and control on inflammatory response is imperative in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
| | | | | | | | - Swathi Gurajala
- College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | | | | | - Santosh Kumar
- Karnavati School of Dentistry Karnavati University Gandhinagar Gujarat, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Ferreira JO, Zambuzi GC, Camargos CHM, Carvalho ACW, Ferreira MP, Rezende CA, de Freitas O, Francisco KR. Zein and hydroxypropyl methylcellulose acetate succinate microfibers combined with metronidazole benzoate and/or metronidazole-incorporated cellulose nanofibrils for potential periodontal treatment. Int J Biol Macromol 2024; 261:129701. [PMID: 38280709 DOI: 10.1016/j.ijbiomac.2024.129701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The development of flexible and porous materials to control antibacterial delivery is a pivotal endeavor in medical science. In this study, we aimed to produce long and defect-free fibers made of zein and hydroxypropyl methylcellulose acetate succinate (HPMCAS) to be used as a platform for the release of metronidazole (MDZ) and metronidazole benzoate (BMDZ) to be potentially used in periodontal treatment. Microfibers prepared via electrospinning under a 2:3 (w/w) zein to HPMCAS ratio, containing 0.5 % (w/w) poly(ethylene oxide) (PEO) and 1 % (w/w) cellulose nanofibril (CNF) were loaded with 40 % (w/w) MDZ, 40 % (w/w) BMDZ, or a combination of 20 % (w/w) of each drug. The addition of CNF improved the electrospinning process, resulting in long fibers with reduced MDZ and BMDZ surface crystallization. MDZ- and BMDZ-incorporated fibers were semicrystalline and displayed commendable compatibility among drugs, nanocellulose and polymeric chains. Release tests showed that zein/HPMCAS/PEO fibers without CNF and with 20 % (w/w) MDZ/ 20 % (w/w) BMDZ released the drug at a slower and more sustained rate compared to other samples over extended periods (up to 5 days), which is a favorable aspect concerning periodontitis treatment.
Collapse
Affiliation(s)
- João O Ferreira
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil
| | - Giovana C Zambuzi
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil
| | - Camilla H M Camargos
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil; School of Fine Arts, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Ana C W Carvalho
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Maíra P Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Camila A Rezende
- Department of Physical Chemistry, Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Osvaldo de Freitas
- Department of Pharmaceutical Sciences, Faculty of Pharmaceuticals Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Kelly R Francisco
- Science and Technology Center for Sustainability, Federal University of São Carlos, Rod. SP-264, km 110, Sorocaba 18052-780, SP, Brazil; Department of Natural Science, Mathematics and Education, Federal University of São Carlos-UFSCar, Araras 13604-900, SP, Brazil.
| |
Collapse
|
5
|
Barbosa RM, da Rocha DN, Bombaldi de Souza RF, Santos JL, Ferreira JRM, Moraes ÂM. Cell-Friendly Chitosan-Xanthan Gum Membranes Incorporating Hydroxyapatite Designed for Periodontal Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15020705. [PMID: 36840027 PMCID: PMC9962096 DOI: 10.3390/pharmaceutics15020705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
In this work, a simple method was proposed to produce dense composite polysaccharide-based membranes to be used for guided tissue and guided bone regeneration. The mucoadhesive polysaccharides chitosan (C) and xanthan gum (X) were used to produce polyelectrolyte-based complex membranes. Hydroxyapatite (HA) was added to the formulation as a potential drug carrier, in C:X:HA mass proportions equal to 1:1:0.4, 1:1:2, and 1:1:10, and also to improve membranes bioactivity and biomimetic properties. FTIR analysis indicated successful incorporation of HA in the membranes and XRD analysis showed that no changes in the HA crystalline structure were observed after incorporation. The residual mass evaluated by TGA was higher for the formulation produced at the proportion 1:1:10. The membranes produced showed asymmetrical surfaces, with distinct roughness. Increasing the HA concentration increased the surface roughness. Greater in vitro proliferation of dental pulp mesenchymal stem cells was observed on the surface of the membrane with 1:1:10 C:X:HA proportion. However, the 1:1:2 formulation showed the most adequate balance of mechanical and biological properties. These results suggest that adding HA to the membranes can influence mechanical parameters as well as cell adhesion and proliferation, supporting the potential application of these materials in regenerative techniques and the treatment of periodontal lesions.
Collapse
Affiliation(s)
- Rafael Maza Barbosa
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
- Department of Bioengineering, R-Crio Criogenia S.A., Campinas 13098-324, SP, Brazil
| | | | - Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
| | - Jheison Lopes Santos
- Department of Physics, Federal Rural University of Rio de Janeiro, Rio de Janeiro 23890-000, RJ, Brazil
| | | | - Ângela Maria Moraes
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas 13083-852, SP, Brazil
- Correspondence:
| |
Collapse
|