1
|
Ding X, Sha D, Sun K, Fan Y. Biomechanical insights into the development and optimization of small-diameter vascular grafts. Acta Biomater 2025:S1742-7061(25)00270-3. [PMID: 40239752 DOI: 10.1016/j.actbio.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/22/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Small-diameter vascular grafts (SDVGs; inner diameter ≤6 mm) offer transformative potential for treating cardiovascular diseases, yet their clinical application remains limited due to high rates of complications such as acute thrombosis and intimal hyperplasia (IH), which compromise long-term patency. While advancements in biological and material science have driven progress, the critical role of biomechanical factors-such as hemodynamic forces and mechanical mismatch-in graft failure is often overlooked. This review presents insights from recent clinical trials of SDVG products and summarizes biomechanical contributors to failure, including disturbed flow patterns, mechanical mismatch, and insufficient mechanical strength. We outline essential mechanical performance criteria (e.g., compliance, burst pressure) and evaluation methodologies to assess SDVG performance. Furthermore, we present optimization strategies based on biomechanical principles: (1) graft morphological design optimization to improve hemodynamic stability, (2) structural, material, and fabrication innovations to achieve compliance matching with native arteries, and (3) biomimetic approaches to mimic vascular tissue and promote endothelialization. By systematically addressing these biomechanical challenges, next-generation SDVGs may achieve superior patency, accelerating their clinical translation. This review highlights the necessity of considering biomechanical compatibility in SDVG development, thereby providing initial insights for the clinical translation of SDVG. STATEMENT OF SIGNIFICANCE: Small-diameter vascular grafts (SDVGs) offer transformative potential for cardiovascular disease treatment but face clinical limitations. While significant progress has been made in biological and material innovations, the critical role of biomechanical factors in graft failure has often been underestimated. This review highlights the importance of biomechanical compatibility in SDVG design and performance, emphasizing the need to address disturbed flow patterns, mechanical mismatch, and inadequate mechanical strength. By proposing optimization strategies based on biomechanical principles, such as graft morphological design, compliance matching, and biomimetic approaches, this work provides a roadmap for developing next-generation SDVGs with improved patency. These advancements have the potential to overcome current limitations, accelerate clinical translation, ultimately benefiting patients worldwide.
Collapse
Affiliation(s)
- Xili Ding
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Superior College for Engineers, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
Malkani S, Prado O, Stevens KR. Sacrificial Templating for Accelerating Clinical Translation of Engineered Organs. ACS Biomater Sci Eng 2025; 11:1-12. [PMID: 39701582 PMCID: PMC11733865 DOI: 10.1021/acsbiomaterials.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Transplantable engineered organs could one day be used to treat patients suffering from end-stage organ failure. Yet, producing hierarchical vascular networks that sustain the viability and function of cells within human-scale organs remains a major challenge. Sacrificial templating has emerged as a promising biofabrication method that could overcome this challenge. Here, we explore and evaluate various strategies and materials that have been used for sacrificial templating. First, we emphasize fabrication approaches that use highly biocompatible sacrificial reagents and minimize the duration that cells spend in fabrication conditions without oxygen and nutrients. We then discuss strategies to create continuous, hierarchical vascular networks, both using biofabrication alone and using hybrid methods that integrate biologically driven vascular self-assembly into sacrificial templating workflows. Finally, we address the importance of structurally reinforcing engineered vessel walls to achieve stable blood flow in vivo, so that engineered organs remain perfused and functional long after implantation. Together, these sacrificial templating strategies have the potential to overcome many current limitations in biofabrication and accelerate clinical translation of transplantable, fully functional engineered organs to rescue patients from organ failure.
Collapse
Affiliation(s)
- Sherina Malkani
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Olivia Prado
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Kelly R. Stevens
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98195, United States
- Department
of Laboratory Medicine and Pathology, University
of Washington, Seattle, Washington 98195, United States
- Brotman
Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
4
|
Fornal M, Krawczyńska A, Belcarz A. Comparison of the Impact of NaIO 4-Accelerated, Cu 2+/H 2O 2-Accelerated, and Novel Ion-Accelerated Methods of Poly(l-DOPA) Coating on Collagen-Sealed Vascular Prostheses: Strengths and Weaknesses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40515-40530. [PMID: 39044622 PMCID: PMC11310904 DOI: 10.1021/acsami.4c05979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Sensitive biomaterials subjected to surface modification require delicate methods to preserve their structures and key properties. These include collagen-sealed polyester vascular prostheses. For their functionalization, coating with polycatecholamines (PCAs) can be used. PCAs change some important biological properties of biomaterials, e.g., hydrophilicity, bioactivity, antibacterial activity, and drug binding. The coating process can be stimulated by oxidants, organic solvents, or process conditions. However, these factors may change the properties of the PCA layer and the matrix itself. In this work, collagen-sealed vascular grafts were functionalized with a poly(l-DOPA) (PLD) layer using novel seawater-inspired ion combination as an accelerator, compared to the sodium periodate, Cu2+/H2O2 mixture, and accelerator-free reference methods. Then, poly(l-DOPA) was used as the interface for antibiotic binding. The coated prostheses were characterized (SEM, FIB-SEM, FTIR, UV/vis), and their important functional parameters (mechanical, antioxidant, hemolytic, and prothrombotic properties, bioactivity, stability in human blood and simulated body fluid (SBF), antibiotic binding, release, and antibacterial activity) were compared. It was found that although sodium periodate increased the strength and drug-binding capacity of the prosthesis, it also increased the blood hemolysis risk. Cu2+/H2O2 destabilized the mechanical properties of the coating and the graft. The seawater-inspired ion-accelerated method was efficient, stable, and matrix- and human blood-friendly, and it stimulated hydroxyapatite formation on the prosthesis surface. The results lead to the conclusion that selection of the PCA formation accelerator should be based on a careful analysis of the biological properties of medical devices. They also suggest that the ion-accelerated method of PLD coating on medical devices may be highly effective and safer than the oxidant-accelerated coating method.
Collapse
Affiliation(s)
- Michał Fornal
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Agnieszka Krawczyńska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, 141 Wołoska, 02-507 Warsaw, Poland
| | - Anna Belcarz
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Rodríguez-Soto MA, Riveros-Cortés A, Orjuela-Garzón IC, Fernández-Calderón IM, Rodríguez CF, Vargas NS, Ostos C, Camargo CM, Cruz JC, Kim S, D’Amore A, Wagner WR, Briceño JC. Redefining vascular repair: revealing cellular responses on PEUU-gelatin electrospun vascular grafts for endothelialization and immune responses on in vitro models. Front Bioeng Biotechnol 2024; 12:1410863. [PMID: 38903186 PMCID: PMC11188488 DOI: 10.3389/fbioe.2024.1410863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Ostos
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
6
|
Ozdemir S, Oztemur J, Sezgin H, Yalcin-Enis I. Optimization of Electrospun Bilayer Vascular Grafts through Assessment of the Mechanical Properties of Monolayers. ACS Biomater Sci Eng 2024; 10:960-974. [PMID: 38196384 DOI: 10.1021/acsbiomaterials.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Small-diameter vascular grafts must be obtained with the most appropriate materials and design selection to harmoniously display a variety of features, including adequate tensile strength, compliance, burst strength, biocompatibility, and biodegradability against challenging physiological and hemodynamic conditions. In this study, monolayer vascular grafts with randomly distributed or radially oriented fibers are produced using neat, blended, and copolymer forms of polycaprolactone (PCL) and poly(lactic acid) (PLA) via the electrospinning technique. The blending ratio is varied by increasing 10 in the range of 50-100%. Bilayer graft designs are realized by determining the layers with a random fiber distribution for the inner layer and radial fiber orientation for the outer layer. SEM analysis, wall thickness and fiber diameter measurements, tensile strength, elongation, burst strength, and compliance tests are done for both mono- and bilayer scaffolds. The findings revealed that the scaffolds made of neat PCL show more flexibility than the neat PLA samples, which possess higher tensile strength values than neat PCL scaffolds. Also, in blended samples, the tensile strength values do not show a significant improvement, whereas the elongation values are enhanced in tubular samples, depending on the blending ratio. Also, neat poly(l-lactide-co-caprolactone) (PLCL) samples have both higher elongation and strength values than neat and blended scaffolds, with some exceptions. The blended specimens comprising a combination of PCL and PLA, with blending ratios of 80/20 and 70/30, exhibited the most elevated burst pressures. Conversely, the PLCL scaffolds demonstrated superior compliance levels. These findings suggest that the blending approach and fiber orientation offer enhanced burst strength, while copolymer utilization in PLCL scaffolds without fiber alignment enhances their compliance properties. Thus, it is evident that using a copolymer instead of blending PCL and PLA and combining the PLCL layer with PCL and PLA monolayers in bilayer vascular graft design is promising in terms of mechanical and biological properties.
Collapse
Affiliation(s)
- Suzan Ozdemir
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Janset Oztemur
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Hande Sezgin
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| | - Ipek Yalcin-Enis
- Textile Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey
| |
Collapse
|
7
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
8
|
Kawecki F, L'Heureux N. Current biofabrication methods for vascular tissue engineering and an introduction to biological textiles. Biofabrication 2023; 15:022004. [PMID: 36848675 DOI: 10.1088/1758-5090/acbf7a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Cardiovascular diseases are the leading cause of mortality in the world and encompass several important pathologies, including atherosclerosis. In the cases of severe vessel occlusion, surgical intervention using bypass grafts may be required. Synthetic vascular grafts provide poor patency for small-diameter applications (< 6 mm) but are widely used for hemodialysis access and, with success, larger vessel repairs. In very small vessels, such as coronary arteries, synthetics outcomes are unacceptable, leading to the exclusive use of autologous (native) vessels despite their limited availability and, sometimes, quality. Consequently, there is a clear clinical need for a small-diameter vascular graft that can provide outcomes similar to native vessels. Many tissue-engineering approaches have been developed to offer native-like tissues with the appropriate mechanical and biological properties in order to overcome the limitations of synthetic and autologous grafts. This review overviews current scaffold-based and scaffold-free approaches developed to biofabricate tissue-engineered vascular grafts (TEVGs) with an introduction to the biological textile approaches. Indeed, these assembly methods show a reduced production time compared to processes that require long bioreactor-based maturation steps. Another advantage of the textile-inspired approaches is that they can provide better directional and regional control of the TEVG mechanical properties.
Collapse
Affiliation(s)
- Fabien Kawecki
- Univ. Bordeaux, INSERM, BIOTIS, UMR1026, Bordeaux, F-33000, France
| | | |
Collapse
|
9
|
Li Y, Jin D, Fan Y, Zhang K, Yang T, Zou C, Yin A. Preparation and performance of random- and oriented-fiber membranes with core-shell structures via coaxial electrospinning. Front Bioeng Biotechnol 2023; 10:1114034. [PMID: 36698642 PMCID: PMC9868300 DOI: 10.3389/fbioe.2022.1114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The cells and tissue in the human body are orderly and directionally arranged, and constructing an ideal biomimetic extracellular matrix is still a major problem to be solved in tissue engineering. In the field of the bioresorbable vascular grafts, the long-term functional prognosis requires that cells first migrate and grow along the physiological arrangement direction of the vessel itself. Moreover, the graft is required to promote the formation of neointima and the development of the vessel walls while ensuring that the whole repair process does not form a thrombus. In this study, poly (l-lactide-co-ε-caprolactone) (PLCL) shell layers and polyethylene oxide (PEO) core layers with different microstructures and loaded with sodium tanshinone IIA sulfonate (STS) were prepared by coaxial electrospinning. The mechanical properties proved that the fiber membranes had good mechanical support, higher than that of the human aorta, as well as great suture retention strengths. The hydrophilicity of the oriented-fiber membranes was greatly improved compared with that of the random-fiber membranes. Furthermore, we investigated the biocompatibility and hemocompatibility of different functional fiber membranes, and the results showed that the oriented-fiber membranes containing sodium tanshinone IIA sulfonate had an excellent antiplatelet adhesion effect compared to other fiber membranes. Cytological analysis confirmed that the functional fiber membranes were non-cytotoxic and had significant cell proliferation capacities. The oriented-fiber membranes induced cell growth along the orientation direction. Degradation tests showed that the pH variation range had little change, the material mass was gradually reduced, and the fiber morphology was slowly destroyed. Thus, results indicated the degradation rate of the oriented-fiber graft likely is suitable for the process of new tissue regeneration, while the random-fiber graft with a low degradation rate may cause the material to reside in the tissue for too long, which would impede new tissue reconstitution. In summary, the oriented-functional-fiber membranes possessing core-shell structures with sodium tanshinone IIA sulfonate/polyethylene oxide loading could be used as tissue engineering materials for applications such as vascular grafts with good prospects, and their clinical application potential will be further explored in future research.
Collapse
Affiliation(s)
- Yunhuan Li
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China,Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Dalai Jin
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongyong Fan
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China,Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kuihua Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Tao Yang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Chengyu Zou
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Anlin Yin
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China,*Correspondence: Anlin Yin,
| |
Collapse
|