1
|
Zheng B, Zhou B, Hu J, Zheng CA, Chen K, Yang S, Richtering W, Harbottle D, Hunter TN, Zhang H. Bioinspired Microgel-Loaded Smart Membrane Filtration with the Thermo- and Ion-Dual Responsive Water Gate for Selective Lead(II) Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45497-45510. [PMID: 39152901 DOI: 10.1021/acsami.4c08830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Lead (Pb2+) is a ubiquitous pollutant. Membrane filtration represents one of the most common water treatment methods, but nanofiltration and ultrafiltration require high transmembrane pressure, while microfiltration has larger pore sizes than ions, making them unfavorable for direct ion removal at low cost. Selective and direct separation of Pb2+ via membrane filtration at high efficiency without sacrificing the flux of clean water still remains challenging. Herein, inspired by the Pb2+-tolerable oleander that enriches and prevents Pb2+ in roots from permeating the plant body, a smart Pb2+-adsorptive filtration membrane with a temperature- and ion-tunable water gate was prepared by loading dual-responsive poly(N-isopropylacrylamido-co-acrylamido-benzo-18-crown-6) (PNB-5-20) microgels onto a commercial membrane. The PNB-5-20 microgel exhibits pronounced temperature-responsive swelling/deswelling (hydrodynamic diameter, 650-330 nm) with a volume phase transition temperature (VPTT) at ∼33 °C. Moreover, the microgel shows a high Pb2+-adsorption capacity (qmax, 85.4 mg/g) and good selectivity (distribution coefficient Kd ∼ 1000 mL/g) thanks to its complexation with the crown ether, as well as good Pb2+ responsiveness, having the VPTT positively shifted to 40 °C in the presence of Pb2+ with enhanced swelling behaviors. Functionalized with PNB-5-20, the smart membrane integrates Pb2+ detection, adsorption, and tunable water drainage in a single device. The membrane selectively recognizes Pb2+ in the polluted water with the gates in membrane pores switching from "open" to "closed", intercepting and adsorbing Pb2+ with water permeation reduced. Once purified, the gates can be "re-opened" by increasing the temperature. Construction of such an intelligent membrane filtration device with a tunable water gate and excellent Pb2+ recognition and adsorption performance will greatly simplify the remediation of Pb2+-polluted water.
Collapse
Affiliation(s)
- Botuo Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Bingnan Zhou
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Jing Hu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Cun-Ai Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Kaixuan Chen
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Shuai Yang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen 52056, Germany, European Union
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Timothy N Hunter
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
2
|
Marin NM, Dolete G, Motelica L, Trusca R, Oprea OC, Ficai A. Preparation of Eco-Friendly Chelating Resins and Their Applications for Water Treatment. Polymers (Basel) 2023; 15:polym15102251. [PMID: 37242827 DOI: 10.3390/polym15102251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, two chelating resins were prepared and used for simultaneous adsorption of toxic metal ions, i.e., Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ (MX+). In the first step, chelating resins were prepared starting with styrene-divinylbenzene resin, a strong basic anion exchanger Amberlite IRA 402(Cl-) with two chelating agents, i.e., tartrazine (TAR) and amido black 10B (AB 10B). Key parameters such as contact time, pH, initial concentration, and stability were evaluated for the obtained chelating resins (IRA 402/TAR and IRA 402/AB 10B). The obtained chelating resins show excellent stability in 2M HCl, 2M NaOH, and also in ethanol (EtOH) medium. The stability of the chelating resins decreased when the combined mixture (2M HCl:EtOH = 2:1) was added. The above-mentioned aspect was more evident for IRA 402/TAR compared to IRA 402/AB 10B. Taking into account the higher stability of the IRA 402/TAR and IRA 402/AB 10B resins, in a second step, adsorption studies were carried out on complex acid effluents polluted with MX+. The adsorption of MX+ from an acidic aqueous medium on the chelating resins was evaluated using the ICP-MS method. The following affinity series under competitive analysis for IRA 402/TAR was obtained: Fe3+(44 µg/g) > Ni2+(39.8 µg/g) > Cd2+(34 µg/g) > Cr3+(33.2 µg/g) > Pb2+(32.7 µg/g) > Cu2+ (32.5 µg/g) > Mn2+(31 µg/g) > Co2+(29 µg/g) > Zn2+ (27.5 µg/g). While for IRA 402/AB 10B, the following behavior was observed: Fe3+(58 µg/g) > Ni2+(43.5 µg/g) > Cd2+(43 µg/g) > Cu2+(38 µg/g) > Cr3+(35 µg/g) > Pb2+(34.5 µg/g) > Co2+(32.8 µg/g) > Mn2+(33 µg/g) > Zn2+(32 µg/g), consistent with the decreasing affinity of MX+ for chelate resin. The chelating resins were characterized using TG, FTIR, and SEM analysis. The obtained results showed that the chelating resins prepared have promising potential for wastewater treatment in the context of the circular economy approach.
Collapse
Affiliation(s)
- Nicoleta Mirela Marin
- National Research and Development Institute for Industrial Ecology ECOIND, Street Podu Dambovitei no. 57-73, District 6, 060652 Bucharest, Romania
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Georgiana Dolete
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ludmila Motelica
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Roxana Trusca
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
3
|
Binazadeh M, Rasouli J, Sabbaghi S, Mousavi SM, Hashemi SA, Lai CW. An Overview of Photocatalytic Membrane Degradation Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093526. [PMID: 37176408 PMCID: PMC10180107 DOI: 10.3390/ma16093526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern. In order to supply clean water for various applications, high-performance treatment technology is required to effectively remove organic and inorganic contaminants. Utilizing photocatalytic membrane reactors (PMRs) has shown promise as a viable alternative process in the water and wastewater industry due to its efficiency, low cost, simplicity, and low environmental impact. PMRs are commonly categorized into two main categories: those with the photocatalyst suspended in solution and those with the photocatalyst immobilized in/on a membrane. Herein, the working and fouling mechanisms in PMRs membranes are investigated; the interplay of fouling and photocatalytic activity and the development of fouling prevention strategies are elucidated; and the significance of photocatalysis in membrane fouling mechanisms such as pore plugging and cake layering is thoroughly explored.
Collapse
Affiliation(s)
- Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Jamal Rasouli
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran
| | - Samad Sabbaghi
- Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz 71557-13876, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|