1
|
Biswas R, Mondal S, Ansari MA, Sarkar T, Condiuc IP, Trifas G, Atanase LI. Chitosan and Its Derivatives as Nanocarriers for Drug Delivery. Molecules 2025; 30:1297. [PMID: 40142072 PMCID: PMC11946192 DOI: 10.3390/molecules30061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Chitosan (CS) occurs naturally as an alkaline polysaccharide and has been demonstrated to have several activities of a biological nature. Additionally, as CS chains have functional hydroxyl and amino groups that are active, their applications can be expanded by chemically or molecularly altering the molecules to incorporate new functional groups. Due to its outstanding qualities, including biodegradability, biocompatibility, non-toxicity, and accessibility, it has received significant interest in all areas of biomedicine and nanomaterials being extremely promising as drug nanocarrier. The last decades have produced a lot of interest in CS-based nanoparticles (CSNPs), with an increasing number of research papers from around 1500 in 2015 to almost 5000 in 2024. The degree of crosslinking, the particulate system's shape, size, and density, in addition to the drug's physical and chemical properties, all have a role in how the drug is transported and released from CSNPs. When creating potential drug delivery systems based on CSNPs, all these factors must be considered. In earlier, CSNPs were employed to enhance the pharmacotherapeutics, pharmacokinetics, and solubility properties of drugs. By investigating its positively charged characteristics and changeable functional groups, CS has evolved into a versatile drug delivery system. The drug release from CSNPs will definitely be influenced by various changes to the functional groups, charges, and polymer backbone. This review mainly discusses the most important results published in the last decade. Despite the promising advantages of CSNPs, challenges related to the translation into clinical stages remain and further in vitro and in vivo studies are mandatory.
Collapse
Affiliation(s)
- Ranu Biswas
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Sourav Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Md Ahesan Ansari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Tanima Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (R.B.); (S.M.); (M.A.A.); (T.S.)
| | - Iustina Petra Condiuc
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gisela Trifas
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Leonard Ionut Atanase
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Faculty of Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
2
|
Gao F, Feng X, Li X. Recent advances in polymeric nanoparticles for the treatment of hepatic diseases. Front Pharmacol 2025; 16:1528752. [PMID: 39925843 PMCID: PMC11802823 DOI: 10.3389/fphar.2025.1528752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The liver performs crucial roles in energy metabolism, detoxification, and immune regulation. Hepatic diseases, including hepatitis, liver fibrosis, and liver cancer, have posed a significant threat to global health, emphasizing the critical need for the development of novel and effective treatment approaches. Nanotechnology, an emerging technology, has been extensively researched in medicine. Among the many types of nanomaterials, polymeric nanoparticles (NPs) are widely used in drug delivery systems. Compared to traditional therapies, they offer significant advantages in the treatment of liver disease by improving outcomes and reducing side effects. This review introduced the development of liver disease and discussed the application of natural polymers and synthetic polymers in their management. Furthermore, this paper reviewed the application of polymeric nanoparticles -mainly chitosan (CS), hyaluronic acid (HA), polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA)-in liver disease treatment, focusing on their use in various delivery systems for pure bioactive compounds of natural origin, drugs, nucleic acids, peptides, and others. Finally, the challenges and future perspectives of the NPs were discussed to provide guidance for further research directions, with the aim of promoting the clinical application of nanotherapeutics in treating hepatic diseases.
Collapse
Affiliation(s)
| | | | - Xinyu Li
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
3
|
Maurya R, Ramteke S, Jain NK. Quality by design (QbD) approach-based development of optimized nanocarrier to achieve quality target product profile (QTPP)-targeted lymphatic delivery. NANOTECHNOLOGY 2024; 35:265101. [PMID: 38502955 DOI: 10.1088/1361-6528/ad355b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Background.Insulin, commonly used for diabetes treatment, needs better ways to improve its effectiveness and safety due to its challenges with poor permeability and stability. Various system has been developed for oral peptide delivery. The non-targeted system can prevent gastric and enzymatic degradation of peptides but cannot increase the bulk transport of peptides across the membrane. However, the non-selectivity is the limitation of the existing system. Numerous carbohydrate-binding receptors overexpressed on intestinal macrophage cells (M-cells) of gut-associated lymphoid tissue. It is the most desirable site for receptor-mediated endocytosis and lymphatic drug delivery of peptides.Objective. The prime objective of the study was to fabricate mannose ligand conjugated nanoparticles (MNPs) employing a quality-by-design approach to address permeability challenges after oral administration. Herein, the study's secondary objective of this study is to identify the influencing factor for producing quality products. Considering this objective, the Lymphatic uptake of NPs was selected as a quality target product profile (QTPP), and a systematic study was conducted to identify the critical formulation attributes (CFAs) and critical process parameters (CPP) influencing critical quality attributes (CQAs). Mannosylated Chitosan concentrations (MCs) and TPP concentrations were identified as CFAs, and stirring speed was identified as CPP.Methods. MNPs were prepared by the inotropic gelation method and filled into the enteric-coated capsule to protect from acidic environments. The effect of CFAs and CPP on responses like particle size (X) and entrapment (Y) was observed by Box-Behnken design (BBD). ANOVA statistically evaluated the result to confirm a significant level (p< 0.05). The optimal conditions of NPs were obtained by constructing an overlay plot and determining the desirability value. HPLC and zeta-seizer analysis characterized the lyophilized NPs. Cell-line studies were performed to confirm the safety and M-cell targeting of NPs to enhance Insulin oral bioavailability.Results. The morphology of NPs was revealed by SEM. The developed NPs showed a nearly oval shape with the average size, surface potential, and % drug entrapment were 245.52 ± 3.37 nm, 22.12 ± 2.13 mV, and 76.15 ± 1.3%, respectively. MTT assay result exhibited that MNPs safe and Confocal imaging inference that NPs selectively uptake by the M-cell.Conclusion. BBD experimental design enables the effective formulation of optimized NPs. The statistical analysis estimated a clear assessment of the significance of the process and formulation variable. Cell line study confirms that NPs are safe and effectively uptake by the cell.
Collapse
Affiliation(s)
- Rahul Maurya
- School of Pharmaceutical Sciences, RGPV, Bhopal, MP, 462033, India
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Cheruthuruthy, Thrissur, Kerala, 679 531, India
| | - Suman Ramteke
- School of Pharmaceutical Sciences, RGPV, Bhopal, MP, 462033, India
| | | |
Collapse
|
4
|
Wang X, Lv L, Liu T, Yang F, Han X, Guan Q. Catechol chitosan coated dual-loaded liposomes based on oxidation and saccharification mechanisms for enhancing skin anti-aging effects. Int J Biol Macromol 2024; 256:128342. [PMID: 37995794 DOI: 10.1016/j.ijbiomac.2023.128342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Skin aging has become a major urgent problem to be solved. Evidence reveals that oxidation and glycosylation are two dominant inducements of aging. Resveratrol (RES) with outstanding anti-oxidant effect and carnosine (CAR) with superb anti-glycation property were selected as two model drugs to evaluate the feasibility of their synergistic anti-aging effect. RES and CAR at the most desired mass ratio, supplying the most superior synergistic anti-aging effects were further encapsulated in liposomes (LP), which were separately coated with chitosan (CS) and catechol chitosan (Cat-CS) to increase the transdermal penetration. Their anti-aging efficacy was explored in human skin fibroblast (HSF) and human immortalized keratinocytes (HaCaT) cells, as well as the back skin of guinea pigs. Herein, RES and CAR at the mass ratio of 2:1 exhibited the most ideal synergistic anti-aging effect. The constructed liposomes have been shown to possess excellent fundamental properties and sustained-release properties. The aging-related indicator levels in the two cells and guinea pigs were obviously improved for the RES + CAR@Cat-CS-LP group. Additionally, skin appearance, tissue morphology, and collagen content were visibly improved, indicating its perfect anti-aging effect. In conclusion, RES + CAR@Cat-CS-LP is expected to be exploited as a potential anti-aging drug delivery system.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Linlin Lv
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Tongyan Liu
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Fengrui Yang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Xuan Han
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Qingxiang Guan
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China.
| |
Collapse
|