1
|
Alsayyah C, Rodrigues E, Hach J, Renne MF, Ernst R. Reversible tuning of membrane sterol levels by cyclodextrin in a dialysis setting. Biophys J 2025:S0006-3495(25)00174-2. [PMID: 40143542 DOI: 10.1016/j.bpj.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/14/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
Large unilamellar vesicles are popular membrane models for studying the impact of lipids and bilayer properties on the structure and function of transmembrane proteins. However, the functional reconstitution of transmembrane proteins in liposomes can be challenging, especially if the hydrophobic thickness of the protein does not match the thickness of the lipid bilayer. Such hydrophobic mismatch causes protein aggregation and low yields during the reconstitution procedure, which are exacerbated in sterol-rich membranes featuring low membrane compressibility. Here, we explore new approaches to reversibly tune the sterol content of (proteo)liposomes with methyl-β-cyclodextrin (mβCD) in a dialysis setting. Maintaining (proteo)liposomes in a confined compartment minimizes loss of material during cholesterol transfer and facilitates efficient removal of mβCD. We monitor the sterol concentration in the membrane with help of the solvatochromic probe C-Laurdan, which reports on lipid packing. Using Förster resonance energy transfer, we show that cholesterol delivery to proteoliposomes induces the oligomerization of a membrane property sensor, whereas a subsequent removal of cholesterol demonstrates full reversibility. We propose that tuning membrane compressibility by mβCD-meditated cholesterol delivery and removal in a dialysis setup provides a new handle to study the impact of sterols and membrane compressibility on membrane protein structure, function, and dynamics.
Collapse
Affiliation(s)
- Cynthia Alsayyah
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany
| | - Emmanuel Rodrigues
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany
| | - Julia Hach
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany.
| |
Collapse
|
2
|
Oliveira IS, Pinheiro GX, Sa MLB, Gurgel PHLO, Pizzol SU, Itri R, Henriques VB, Enoki TA. The Importance of Bilayer Asymmetry in Biological Membranes: Insights from Model Membranes. MEMBRANES 2025; 15:79. [PMID: 40137031 PMCID: PMC11943618 DOI: 10.3390/membranes15030079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
This mini-review intends to highlight the importance of bilayer asymmetry. Biological membranes are complex structures that are a physical barrier separating the external environment from the cellular content. This complex bilayer comprises an extensive lipid repertory, suggesting that the different lipid structures might play a role in the membrane. Interestingly, this vast repertory of lipids is asymmetrically distributed between leaflets that form the lipid bilayer. Here, we discuss the properties of the plasma membrane from the perspective of experimental model membranes, consisting of simplified and controlled in vitro systems. We summarize some crucial features of the exoplasmic (outer) and cytoplasmic (inner) leaflets observed through investigations using symmetric and asymmetric membranes. Symmetric model membranes for the exoplasmic leaflet have a unique lipid composition that might form a coexistence of phases, namely the liquid disordered and liquid order phases. These phase domains may appear in different sizes and shapes depending on lipid composition and lipid-lipid interactions. In contrast, symmetric model membranes for the cytoplasmic leaflet form a fluid phase. We discuss the outcomes reported in the literature for asymmetric bilayers, which vary according to lipid compositions and, consequently, reflect different intra- and inter-leaflet interactions. Interestingly, the asymmetric bilayer could show induced domains in the inner leaflet, or it could decrease the tendency of the outer leaflet to phase separation. If cells regulate the lipid composition of the plasma membrane, they can adjust the existence and sizes of the domains by tuning the lipid composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thais A. Enoki
- Institute of Physics, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| |
Collapse
|
3
|
Schachter I. Lipid demixing reduces energy barriers for high-curvature vesicle budding. Biophys J 2024:S0006-3495(24)04073-6. [PMID: 39673133 DOI: 10.1016/j.bpj.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Under standard physiological conditions, budding relies on asymmetries, including differences in leaflet composition, area, and osmotic conditions, and involves large curvature changes in nanoscale lipid vesicles. So far, the combined impact of asymmetry and high curvatures on budding has remained unknown. Here, using the continuum elastic theory, the budding pathway is detailed under realistic conditions. The model enables a quantitative description of the budding process and the budded state of both ideally and nonideally mixed lipid nanoscale vesicles. It shows that budding is less favored in smaller vesicles but that lipid demixing can significantly reduce its energy barrier, and yet high compositional deviations of more than 7% between the bud and vesicle only occur with phase separation on the bud.
Collapse
Affiliation(s)
- Itay Schachter
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Chemistry, The Fritz Haber Research Center, The Harvey M. Kruger Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
4
|
Zhu Y, Porcar L, Ravula T, Batchu KC, Lavoie TL, Liu Y, Perez-Salas U. Unexpected asymmetric distribution of cholesterol and phospholipids in equilibrium model membranes. Biophys J 2024; 123:3923-3934. [PMID: 39390746 PMCID: PMC11617633 DOI: 10.1016/j.bpj.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/21/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
Lipid compositional asymmetry across the leaflets of the plasma membrane is an ubiquitous feature in eukaryotic cells. How this asymmetry is maintained is thought to be primarily controlled by active transport of lipids between leaflets. This strategy is facilitated by the fact that long-tail phospholipids and sphingolipids diffuse through the lipid bilayer slowly-taking many hours or days. However, a lipid like cholesterol-which is the most abundant lipid in the plasma membrane of animal cells-has been harder to pinpoint in terms of its favored side. In this work we show that, when a saturated lipid is added to a mix of the unsaturated lipid palmitoyl-oleoyl-phosphatidylcholine (POPC) and cholesterol, both cholesterol and the long-tail phospholipids organize asymmetrically across the membrane's leaflets naturally. In these extruded unilamellar vesicles, most cholesterol as well as the saturated lipid-dipalmitoylphosphatidylcholine or sphingomyelin-segregated to the inner leaflet while POPC preferentially localized in the outer leaflet. This asymmetric arrangement generated a slight phospholipid number imbalance favoring the outer leaflet and thus opposite to where cholesterol and the saturated lipids preferentially partitioned. These results were obtained using magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with small-angle neutron scattering (SANS) using isotope labeling to differentiate lipid species. We suggest that sidedness in membranes can be driven by thermodynamic processes. In addition, our MAS NMR results show that the lower bound for cholesterol's flip-flop half-time at 45°C is 10 ms, which is at least two orders of magnitude slower than current MD simulations predict. This result stands in stark contrast to previous work that suggested that cholesterol's flip-flop half-time at 37°C has an upper bound of 10 ms.
Collapse
Affiliation(s)
- Yuli Zhu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Lionel Porcar
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Thirupathi Ravula
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Krishna C Batchu
- Institut Laue-Langevin, Large Scale Structures Group, Grenoble, France
| | - Tera L Lavoie
- Advanced Electron Microscopy, University of Chicago, Chicago, Illinois
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Ursula Perez-Salas
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
McDonough J, Paratore TA, Ketelhohn HM, DeCilio BC, Ross AH, Gericke A. Engineering Phosphatidylserine Containing Asymmetric Giant Unilamellar Vesicles. MEMBRANES 2024; 14:181. [PMID: 39330522 PMCID: PMC11433827 DOI: 10.3390/membranes14090181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
The plasma membrane lipid distribution is asymmetric, with several anionic lipid species located in its inner leaflet. Among these, phosphatidylserine (PS) plays a crucial role in various important physiological functions. Over the last decade several methods have been developed that allow for the fabrication of large or giant unilamellar vesicles (GUVs) with an asymmetric lipid composition. Investigating the physicochemical properties of PS in such asymmetric lipid bilayers and studying its interactions with proteins necessitates the reliable fabrication of asymmetric GUVs (aGUVs) with a high degree of asymmetry that exhibit PS in the outer leaflet so that the interaction with peptides and proteins can be studied. Despite progress, achieving aGUVs with well-defined PS asymmetry remains challenging. Recently, a Ca2+-initiated hemifusion method has been introduced, utilizing the fusion of symmetric GUVs (sGUVs) with a supported lipid bilayer (SLB) for the fabrication of aGUVs. We extend this approach to create aGUVs with PS in the outer bilayer leaflet. Comparing the degree of asymmetry between aGUVs obtained via Ca2+ or Mg2+ initiated hemifusion of a phosphatidylcholine (PC) sGUVwith a PC/PS-supported lipid bilayer, we observe for both bivalent cations a significant number of aGUVs with near-complete asymmetry. The degree of asymmetry distribution is narrower for physiological salt conditions than at lower ionic strengths. While Ca2+ clusters PS in the SLB, macroscopic domain formation is absent in the presence of Mg2+. However, the clustering of PS upon the addition of Ca2+ is apparently too slow to have a negative effect on the quality of the obtained aGUVs. We introduce a data filtering method to select aGUVs that are best suited for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA (T.A.P.); (H.M.K.); (B.C.D.); (A.H.R.)
| |
Collapse
|
6
|
Pabst G, Heerklotz H. After the gold rush: Getting far from the shallow in studying asymmetric membranes. Biophys J 2024; 123:2355-2357. [PMID: 38902925 PMCID: PMC11365099 DOI: 10.1016/j.bpj.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Affiliation(s)
- Georg Pabst
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; BIOSS Signaling Research Center, Freiburg, Germany
| |
Collapse
|
7
|
Deserno M. Biomembranes balance many types of leaflet asymmetries. Curr Opin Struct Biol 2024; 87:102832. [PMID: 38735128 DOI: 10.1016/j.sbi.2024.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Many biological membranes host different lipid species in their two leaflets. Since their spontaneous curvatures are typically not the same, this compositional asymmetry generally entails bending torques, which can be counteracted by differential stress-the difference between the two leaflet tensions. This stress, in turn, can affect elastic parameters or phase behavior of the membrane or each individual leaflet, or push easily flippable species, especially cholesterol, from the compressed leaflet into the tense leaflet. In short, breaking the symmetry of a single observable (to wit: composition), essentially breaks all other symmetries as well, with many potentially interesting consequences. This brief report examines the elastic aspects of this interplay, focusing on some elementary conditions of mechanical and thermodynamic equilibrium, but also shows how this poses novel questions that we are only beginning to appreciate.
Collapse
Affiliation(s)
- Markus Deserno
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Kennison-Cook KB, Heberle FA. Disruption of liquid/liquid phase separation in asymmetric GUVs prepared by hemifusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600037. [PMID: 38979299 PMCID: PMC11230200 DOI: 10.1101/2024.06.21.600037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Model asymmetric bilayers are useful for studying the coupling between lateral and transverse lipid organization. Here, we used calcium-induced hemifusion to create asymmetric giant unilamellar vesicles (aGUVs) for exploring the phase behavior of 16:0-PC/16:1-PC/Cholesterol, a simplified model for the mammalian plasma membrane. Symmetric GUVs (sGUVs) were first prepared using a composition that produced coexisting liquid-disordered and liquid-ordered phases visible by confocal fluorescence microscopy. The sGUVs were then hemifused to a supported lipid bilayer (SLB) composed of uniformly mixed 16:1-PC/Cholesterol. The extent of outer leaflet exchange was quantified in aGUVs in two ways: (1) from the reduction in fluorescence intensity of a lipid probe initially in the sGUV ("probe exit"); or (2) from the gain in intensity of a probe initially in the SLB ("probe entry"). These measurements revealed a large variability in the extent of outer leaflet exchange in aGUVs within a given preparation, and two populations with respect to their phase behavior: a subset of vesicles that remained phase separated, and a second subset that appeared uniformly mixed. Moreover, a correlation between phase behavior and extent of asymmetry was observed, with more strongly asymmetric vesicles having a greater probability of being uniformly mixed. We also observed substantial overlap between these populations, an indication that the uncertainty in measured exchange fraction is high. We developed models to determine the position of the phase boundary (i.e., the fraction of outer leaflet exchange above which domain formation is suppressed) and found that the phase boundaries determined separately from probe-entry and probe-exit data are in good agreement. Our models also provide improved estimates of the compositional uncertainty of individual aGUVs. We discuss several potential sources of uncertainty in the determination of lipid exchange from fluorescence measurements.
Collapse
|
9
|
Pabst G, Keller S. Exploring membrane asymmetry and its effects on membrane proteins. Trends Biochem Sci 2024; 49:333-345. [PMID: 38355393 DOI: 10.1016/j.tibs.2024.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Plasma membranes utilize free energy to maintain highly asymmetric, non-equilibrium distributions of lipids and proteins between their two leaflets. In this review we discuss recent progress in quantitative research enabled by using compositionally controlled asymmetric model membranes. Both experimental and computational studies have shed light on the nuanced mechanisms that govern the structural and dynamic coupling between compositionally distinct bilayer leaflets. This coupling can increase the membrane bending rigidity and induce order - or lipid domains - across the membrane. Furthermore, emerging evidence indicates that integral membrane proteins not only respond to asymmetric lipid distributions but also exhibit intriguing asymmetric properties themselves. We propose strategies to advance experimental research, aiming for a deeper, quantitative understanding of membrane asymmetry, which carries profound implications for cellular physiology.
Collapse
Affiliation(s)
- Georg Pabst
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| | - Sandro Keller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Graz 8010, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
10
|
Bodosa J, Pane AJ, Klauda JB. Modeling asymmetric cell membranes at all-atom resolution. Methods Enzymol 2024; 701:157-174. [PMID: 39025571 DOI: 10.1016/bs.mie.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Molecular dynamics (MD) simulations are a useful tool when studying the properties of membranes as they allow for a molecular view of lipid interactions with proteins, nucleic acids, or small molecules. While model membranes are usually symmetric in their lipid composition between leaflets and include a small number of lipid components, physiological membranes are highly complex and vary in the level of asymmetry. Simulation studies have shown that changes in leaflet asymmetry can alter the properties of a membrane. It is therefore necessary to carefully build asymmetric membranes to accurately simulate membranes. This chapter carefully describes the different methods for building asymmetric membranes and the advantages/disadvantages of each method. The simplest methods involve building a membrane with either an equal number of lipids per leaflet or an equal initial surface area (SA) estimated by the area per lipid. More detailed methods include combining two symmetric membranes of equal SA or altering an asymmetric membrane and adjusting the number of lipids after equilibration to minimize an observable such as differential stress (0-DS). More complex methods that require specific simulation software are also briefly described. The challenges and assumptions are listed for each method which should help guide the researcher to choose the best method for their unique MD simulation of an asymmetric membrane.
Collapse
Affiliation(s)
- Jessica Bodosa
- Institute for Physical Science and Technology, Biophysics Program, University of Maryland, College Park, MD, United States
| | - Anthony J Pane
- Institute for Physical Science and Technology, Biophysics Program, University of Maryland, College Park, MD, United States
| | - Jeffery B Klauda
- Institute for Physical Science and Technology, Biophysics Program, University of Maryland, College Park, MD, United States; Department of Chemical and Biomolecular Engineering, College Park, MD, United States.
| |
Collapse
|
11
|
Pašalić L, Maleš P, Čikoš A, Pem B, Bakarić D. The rise of FTIR spectroscopy in the characterization of asymmetric lipid membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123488. [PMID: 37813090 DOI: 10.1016/j.saa.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
In contrast to symmetric unilamellar liposomes (sLUVs) prepared from a mixture of different lipids, asymmetric ones (aLUVs) with different lipid composition in the inner and outer membrane leaflets are more suitable model systems of eukaryotic plasma membranes. However, apart from the challenging preparation of asymmetric liposomes and small amounts of obtained asymmetric unilamellar liposomes (aLUVs), a major drawback is the qualitative characterization of asymmetry, as each of the techniques used so far has certain limitations. In this regard, we prepared aLUVs composed dominantly of DPPC(out)/DPPS(in) lipids and, along with 1H NMR and DSC characterization, we showed for the first time how FTIR spectroscopy can be used in the presence of (a)symmetry between DPPC/DPPS lipid bilayers. Using second derivative FTIR spectra we demonstrated not only that the hydration of lipids glycerol backbone and choline moiety of DPPC differs in s/aLUVs, but in addition that the lateral interactions between hydrocarbon chains during the phase change display different trend in s/aLUVs. Molecular dynamics simulations confirmed different chain ordering and packing between s/a bilayers, with a significant influence of temperature, i.e. membrane phase.
Collapse
Affiliation(s)
- Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ana Čikoš
- The Centre for Nuclear Magnetic Resonance (NMR), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
12
|
Gardea-Gutiérrez D, Núñez-García E, Oseguera-Guerra BE, Román-Aguirre M, Montes-Fonseca SL. Asymmetric Lipid Vesicles: Techniques, Applications, and Future Perspectives as an Innovative Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:777. [PMID: 37375725 DOI: 10.3390/ph16060777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Novel lipid-based nanosystems have been of interest in improving conventional drug release methods. Liposomes are the most studied nanostructures, consisting of lipid bilayers ideal for drug delivery, thanks to their resemblance to the cell plasma membrane. Asymmetric liposomes are vesicles with different lipids in their inner and outer layers; because of this, they can be configured to be compatible with the therapeutic drug while achieving biocompatibility and stability. Throughout this review, topics such as the applications, advantages, and synthesis techniques of asymmetric liposomes will be discussed. Further, an in silico analysis by computational tools will be examined as a helpful tool for designing and understanding asymmetric liposome mechanisms in pharmaceutical applications. The dual-engineered design of asymmetric liposomes makes them an ideal alternative for transdermal drug delivery because of the improved protection of pharmaceuticals without lowering adsorption rates and system biocompatibility.
Collapse
Affiliation(s)
- Denisse Gardea-Gutiérrez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Eduardo Núñez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Berenice E Oseguera-Guerra
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Manuel Román-Aguirre
- Centro de Investigación en Materiales Avanzados CIMAV, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih, Mexico
| | - Silvia L Montes-Fonseca
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| |
Collapse
|