1
|
Woźniak P, Gryta M. Bacterial Contamination of Ultrafiltration Installation Applied to Carwash Wastewater Treatment. MEMBRANES 2025; 15:71. [PMID: 40137023 PMCID: PMC11943496 DOI: 10.3390/membranes15030071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
An ultrafiltration (UF) installation was used to separate the actual wastewater from a car wash. Following these studies, the plant was washed several times; however, severe membrane fouling was observed during the filtration of sterile deionised (DI) water. As a result, the permeate flux decreased by more than 50% after 5 h of the UF process. The source of the fouling was the release of deposits, particularly bacteria, from the surfaces of plant elements such as pipes and pumps. The paper presents the effectiveness of biofilm removal from the surface of the equipment during a cyclically repeated washing process. Chemical washing was carried out using acid solutions and alkaline cleaning solutions containing NaOH (pH = 11.5-12). After installation cleaning, the filtration tests were carried out using DI water as a feed. It was determined how biofouling, which develops under these conditions, reduces permeate flux. Despite 3 h of installation washing, there was a 50% reduction in flux after 10 h of UF. Repeating the installation wash (4 h) resulted in a similar decrease in flux after 4 days of UF. Stabilisation of the flux at a level of 500 LMH was achieved after an additional 5 h of washing, including application of hot (323-333 K) alkaline cleaning solutions. The number of bacteria in the biofilm collected from the surface of the membranes, the pump inlet and the surface of the polyvinyl chloride (PVC) hoses forming the pipeline was also investigated. Despite repeated chemical cleaning, the number of bacteria on the pump and hose surfaces was 50-100 CFU/cm2. Studies were carried out to determine which bacterial species survived the chemical cleaning of the installation. Gram-positive and Gram-negative bacteria were determined, and taxonomic characteristics of the isolated bacteria were identified.
Collapse
Affiliation(s)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
2
|
Tomczak W, Gryta M, Woźniak P, Daniluk M. Changes in the Separation Properties of Aged PVDF Ultrafiltration Membranes During Long-Term Treatment of Car Wash Wastewater. MEMBRANES 2025; 15:66. [PMID: 40137018 PMCID: PMC11943878 DOI: 10.3390/membranes15030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Car wash wastewater (CWW) is complex waste that may be effectively treated by the ultrafiltration (UF) process. However, one of the most important challenges in implementing this process on an industrial scale is the fouling phenomenon membrane aging. Indeed, these may lead to a reduction in UF performance possibly associated with a loss in integrity of the fouled/aged membrane. Therefore, the main aim of the current study was to provide a comprehensive investigation on the changes in the separation properties of aged FP100 ultrafiltration membranes made of polyvinylidene fluoride (PVDF) with respect to their application for long-term treatment of CWW. For this purpose, studies were conducted for new membranes and membranes previously used for over 5 years in a pilot plant. As a feed, solutions of dextran, solutions of model organism Escherichia coli and synthetic CWW were used. It has been found that PVDF membranes demonstrated poor stability when in frequent contact with chemicals periodically applied for membrane cleaning. Indeed, the aged membranes were characterised by the increased porosity. However, it is important to note that membranes aging had no significant impact on the permeate quality during the UF process of synthetic CWW. Indeed, the obtained permeate was characterised by the turbidity lower than 0.25 NTU. Likewise, with regard to the separation of E. coli, the aged PVDF membranes ensured the high process efficiency and over 99.99% bacterial retention. In the interest of the growing potential of PVDF membrane in CWW treatment, the results obtained in the current work complement the findings made in this field.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (M.G.); (P.W.)
| | - Piotr Woźniak
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (M.G.); (P.W.)
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
3
|
Woźniak P, Gryta M. Influence of Reclaimed Water on the Visual Quality of Automotive Coating. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5382. [PMID: 39517656 PMCID: PMC11547185 DOI: 10.3390/ma17215382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
In the present study, the possibility of recovering water in a car wash station was presented. The resistance of automotive coatings to washing water recovered at 50% and 70% from wastewater generated at car wash was tested. Wastewater treatment was carried out by ultrafiltration (UF) using tubular polyvinylidene fluoride (PVDF) membranes (100 and 200 kDa) manufactured by the PCI company. The membranes retained oil contamination, suspended solids, and over 60% of surfactants. For comparison, the 0.5% Turbo Active Green solution, used at professional car washes, was also applied in paint resistance studies. The tested solutions washed the painted surfaces of samples taken from car doors for 8 days. The resistance of automotive coatings to washing solutions was assessed by measuring gloss, Log Haze, RIQ, and Rspec parameters. Scratch resistance was also assessed. The results obtained in the current study indicated that the use of water recovered from wastewater did not deteriorate the quality of the car paint coating.
Collapse
Affiliation(s)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
4
|
Woźniak P, Gryta M. Application of Polymeric Tubular Ultrafiltration Membranes for Separation of Car Wash Wastewater. MEMBRANES 2024; 14:210. [PMID: 39452822 PMCID: PMC11509102 DOI: 10.3390/membranes14100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The commercial ultrafiltration tubular polyvinylidene fluoride (PVDF) (100 and 200 kDa) and polyethersulfone (PES) (4 kDa) membranes were applied for filtration of car wash wastewater. Intensive fouling was noticed, which caused an over 50% flux reduction during 3-5 h of the filtration process. This phenomenon was reduced by washing the membranes with an alkaline cleaning agent (pH = 11.5), which is used in car washes to remove insects. The filtration/membrane washing cycle was repeated many times to achieve stable operation of the membrane modules. It has been found that cyclic repeated washing did not deteriorate the performance of the membranes. Despite frequent cleaning of the membranes (every 5-7 h), irreversible fouling occurred, resulting in a 20% reduction in the initial permeate flux. However, the formation of a filter cake definitely improved the separation degree and, for the 200 kDa membranes, separation of the wastewater components was obtained as it was for the 4 kDa membranes, while, at the same time, the permeate flux was 5 times higher.
Collapse
Affiliation(s)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland;
| |
Collapse
|
5
|
Tomczak W, Woźniak P, Gryta M, Grzechulska-Damszel J, Daniluk M. Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study. MEMBRANES 2024; 14:159. [PMID: 39057667 PMCID: PMC11278524 DOI: 10.3390/membranes14070159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current study was to investigate the performance of the UF membranes used for the long-term treatment of real CWWs. For this purpose, two polyethersulfone (PES) membranes with molecular weight cut-off (MWCO) values equal to 10 and 100 kDa were applied. As expected, a significant decrease in the permeate flux during the UF run was observed. However, it was immediately demonstrated that the systematic cleaning of membranes (every day) with Insect agent (pH = 11.5) prevented a further decline in the process's performance. In addition, this study focused on the relative flux during the process run with breaks lasting a few days when the UF installation was filled with distilled water. The results of this research indicated that aqueous media favor microorganism adherence to the surface which leads to the formation of biofilms inside processing installations. As a consequence, many attempts have been made to restore the initial membrane performance. It has been found that the application of several chemical agents is required. More precisely, the use of an Insect solution, P3 Ultrasil 11 agent, and phosphoric acid increases the relative flux to a value of 0.8. Finally, it has been indicated that the membranes used in this work are resistant to the long-term exposure to bacteria and chemical agents. However, during the separation of CWWs for the membrane with an MWCO of 10 kDa, a lesser fouling influence and higher effectiveness of cleaning were obtained. Finally, the present study demonstrates a novel analysis and innovative implications towards applying the UF process for the CWW treatment.
Collapse
Affiliation(s)
- Wirginia Tomczak
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| | - Piotr Woźniak
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Joanna Grzechulska-Damszel
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 10 Pułaskiego Street, 70-322 Szczecin, Poland; (P.W.); (J.G.-D.)
| | - Monika Daniluk
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 3 Seminaryjna Street, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
6
|
Gryta M, Woźniak P, Mozia S. Effects of Alkaline Cleaning Agents on the Long-Term Performance and Aging of Polyethersulfone Ultrafiltration Membranes Applied for Treatment of Car Wash Wastewater. MEMBRANES 2024; 14:122. [PMID: 38921489 PMCID: PMC11206023 DOI: 10.3390/membranes14060122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The commercial ultrafiltration polyethersulfone (PES) membranes (10 and 100 kDa) blended with polyvinylpyrrolidone (PVP) were applied for the filtration of car wash wastewater. Periodical membrane rinsing with water did not prevent fouling and a decrease in permeate flux was observed. Fouling was reduced by washing the membranes with cleaning agents, which are used in car washes to clean wheels and remove insects. In addition to surfactants, these agents contain NaOH, hence the pH value of cleaning solutions was over 11. Long-term contact with such solutions resulted in the removal of PVP from the membrane matrix and an increase in pore size. The PES membranes were soaked in an alkaline solution (pH = 11.5) for 20 months, after which the 200 kDa dextran rejection decreased from 95% to 80%. To compare with the static degradation conditions, 8 weeks of alkaline agent filtration was realized, after which the dextran (200 kDa) rejection decreased below 50%. This indicated that the cross-flow of alkaline agents can accelerate the removal of components building the membrane matrix. Despite membrane degradation, the separation efficiency (the rejection of chemical oxygen demand-COD, turbidity, and surfactants) during the treatment of synthetic car wash wastewater was similar to that obtained for pristine membranes.
Collapse
Affiliation(s)
- Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland; (P.W.); (S.M.)
| | | | | |
Collapse
|
7
|
Kayanja O, Hassan MA, Hassanin A, Ohashi H, Khalil ASG. Optimization of isotropic MoS 2/PES membranes for efficient treatment of industrial oily wastewater. RSC Adv 2024; 14:12058-12070. [PMID: 38628476 PMCID: PMC11019293 DOI: 10.1039/d4ra01052c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Elimination of tiny oil droplets nearly miscible with wastewater can be realized using membrane technology through ultrafiltration. The novelty of this work was to blend different phases of molybdenum disulfide (MoS2) in isotropic polyethersulfone (PES). We prepared isotropic PES membranes by optimizing nonsolvent vapour-induced phase separation (VIPS). Membranes were blended with MoS2 nanosheets of different phases to promote separation performance and antifouling resistance. FE-SEM revealed the flower-like surface morphology of MoS2 nanosheets. HR-TEM of MoS2 revealed 2H domains in the monolayer, flakes of a few layers and a d-spacing of 0.22 nm. Raman spectroscopy could be used to distinguish mixed-phase MoS2 from single-phase MoS2. Isotropic PES membranes modified with 70% 1T/2H MoS2 had a significantly high permeance to pure water (6911 kg m-2 h bar). The same membrane possessed a high efficiency of oil rejection of 98.78%, 97.85%, 99.83% for emulsions of industrial crude oil at 100, 1000 and 10 000 mg L-1, respectively. Removal of oil droplets from wastewater was dominated by a mechanism based on size exclusion. Isotropic PES modified with 2H MoS2 possessed superior oleophilicity, which resulted in low rejection of crude oil. Modified membranes showed excellent fouling resistance for three successive filtration cycles, as evidenced by enhanced antifouling parameters. Our study reveals how the phase composition of MoS2 nanosheets can significantly affect the performance of isotropic PES membranes during the ultrafiltration of oily wastewater.
Collapse
Affiliation(s)
- Oscar Kayanja
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
| | - Mohsen A Hassan
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
| | - Ahmed Hassanin
- Materials Science and Engineering Department, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
- Department of Textile Engineering, Faculty of Engineering, Alexandria University Alexandria 21544 Egypt
| | - Hidenori Ohashi
- Faculty of Engineering, Tokyo University of Agriculture and Technology (TUAT) 2-24-16, Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Ahmed S G Khalil
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST) 179 New Borg El-Arab City Alexandria Egypt
- Environmental and Smart Technology Group, Faculty of Science, Fayoum University 63514 Fayoum Egypt
| |
Collapse
|
8
|
Gryta M, Woźniak P. The Resistance of Polyethersulfone Membranes on the Alkaline Cleaning Solutions. MEMBRANES 2024; 14:27. [PMID: 38392654 PMCID: PMC10890262 DOI: 10.3390/membranes14020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Polyethersulfone (PES) is a polymer popularly used to produce ultrafiltration (UF) membranes. PES is relatively hydrophobic; thus, hydrophilic ingredients are added to the membrane matrix to reduce the fouling intensity. Ingredients such as polyvinylpyrrolidone (PVP) reduce the resistance of PES to NaOH solutions. This study investigated the possibility of using PES membranes for the separation of alkaline cleaning solutions. For this purpose, self-made PES membranes and commercial ultrafiltration PES membranes (UE10-10 kDa and UE50-100 kDa) containing PVP additive were used. The membranes were soaked for 18 months in alkaline (pH = 11.3-11.5) solutions of car washing fluids. It has been found that long-term contact with these solutions caused changes in the structure of the surface layer, especially of membranes containing PVP. As a result, the separation of dextran (100-200 kDa) decreased by 30-40% for PES membranes, 30-40% for UE10 and 40-60% for UE50. Despite these changes, the separation efficiency (rejection of COD, NTU and anionic surfactants) of synthetic car wash wastewater (mixture of surfactants and hydrowax) was similar to the results obtained for pristine membranes.
Collapse
Affiliation(s)
- Marek Gryta
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| | - Piotr Woźniak
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| |
Collapse
|
9
|
Manin A, Golubenko D, Novikova S, Yaroslavtsev A. Composite Anion Exchange Membranes Based on Quaternary Ammonium-Functionalized Polystyrene and Cerium(IV) Phosphate with Improved Monovalent-Ion Selectivity and Antifouling Properties. MEMBRANES 2023; 13:624. [PMID: 37504990 PMCID: PMC10386577 DOI: 10.3390/membranes13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
The possibility of targeted change of the properties of ion exchange membranes by incorporation of various nanoparticles into the membranes is attracting the attention of many research groups. Here we studied for the first time the influence of cerium phosphate nanoparticles on the physicochemical and transport properties of commercial anion exchange membranes based on quaternary ammonium-functionalized polystyrenes, such as heterogeneous Ralex® AM and pseudo-homogeneous Neosepta® AMX. The incorporation of cerium phosphate on one side of the membrane was performed by precipitation from absorbed cerium ammonium nitrate (CAN) anionic complex with ammonium dihydrogen phosphate or phosphoric acid. The structures of the obtained hybrid membranes and separately synthesized cerium phosphate were investigated using FTIR, P31 MAS NMR, EDX mapping, and scanning electron microscopy. The modification increased the membrane selectivity to monovalent ions in the ED desalination of an equimolar mixture of NaCl and Na2SO4. The highest selectivities of Ralex® AM and Neosepta® AMX-based hybrid membranes were 4.9 and 7.7, respectively. In addition, the modification of Neosepta® membranes also increased the resistance to a typical anionic surfactant, sodium dodecylbenzenesulfonate.
Collapse
Affiliation(s)
- Andrey Manin
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova str., 7, Moscow 119048, Russia
| | - Daniel Golubenko
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
| | - Svetlana Novikova
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
- Faculty of Chemistry, National Research University Higher School of Economics, Vavilova str., 7, Moscow 119048, Russia
| | - Andrey Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninskii Prospekt 31, Moscow 119071, Russia
| |
Collapse
|