1
|
Grigoriev SN, Kozochkin MP, Porvatov AN, Ostrikov EA, Mustafaev ES, Gurin VD, Okunkova AA. Acoustic Features of the Impact of Laser Pulses on Metal-Ceramic Carbide Alloy Surface. SENSORS (BASEL, SWITZERLAND) 2024; 24:5160. [PMID: 39204855 PMCID: PMC11360262 DOI: 10.3390/s24165160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Technologies associated with using concentrated energy flows are increasingly used in industry due to the need to manufacture products made of hard alloys and other difficult-to-process materials. This work is devoted to expanding knowledge about the processes accompanying the impact of laser pulses on material surfaces. The features of these processes are reflected in the acoustic emission signals, the parameters of which were used as a tool for understanding the accompanying phenomena. The influence of plasma formations above the material surface on self-oscillatory phenomena and the self-regulation process that affects pulse productivity were examined. The stability of plasma formation over time, its influence on the pulse performance, and changes in the heat flux power density were considered. Experimental data show the change in the power density transmitted by laser pulses to the surface when the focal plane is shifted. Experiments on the impact of laser pulses of different powers and durations on the surface of a hard alloy showed a relationship between the amplitude of acoustic emission and the pulse performance. This work shows the data content of acoustic emission signals and the possibility of expanding the research of concentrated energy flow technologies.
Collapse
Affiliation(s)
| | - Mikhail P. Kozochkin
- Department of High-Efficiency Processing Technologies, Moscow State University of Technology STANKIN, Vadkovskiy per. 3A, 127994 Moscow, Russia; (S.N.G.); (A.N.P.); (E.A.O.); (E.S.M.); (V.D.G.); (A.A.O.)
| | | | | | | | | | | |
Collapse
|
2
|
Kamel SM, Daróczi L, Tóth LZ, Beke DL, Juárez GG, Cobo S, Salmon L, Molnár G, Bousseksou A. Acoustic emissions from spin crossover complexes. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:5757-5765. [PMID: 38680543 PMCID: PMC11044199 DOI: 10.1039/d4tc00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Acoustic emission from the compounds [Fe(HB(tz)3)2] and [Fe(Htrz)(trz)2]BF4 was detected during the thermally induced spin transition and is correlated with simultaneously recorded calorimetric signals. We ascribe this phenomenon to elastic waves produced by microstructural and volume changes accompanying the spin transition. Despite the perfect reversibility of the spin state switching (seen by the calorimeter), the acoustic emission activity decreases for successive thermal cycles, revealing thus irreversible microstructural evolution of the samples. The acoustic emission signal amplitude and energy probability distribution functions followed power-law behavior and the characteristic exponents were found to be similar for the two samples both on heating and cooling, indicating the universal character, which is further substantiated by the well scaled average temporal shapes of the avalanches.
Collapse
Affiliation(s)
- Sarah M Kamel
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
- Physics Department, Faculty of Science Ain Shams University, Abbassia 11566 Cairo Egypt
| | - Lajos Daróczi
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - László Z Tóth
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - Dezső L Beke
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - Gerardo Gutiérrez Juárez
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato-Campus León, Loma del Bosque 103, Loma del Campestre 37150 León Gto. Mexico
| | - Saioa Cobo
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Lionel Salmon
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Gábor Molnár
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Azzedine Bousseksou
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| |
Collapse
|
3
|
Bronstein E, Zimmerman J, Rabkin E, Faran E, Talmon R, Shilo D. Enhancing the detection capabilities of nano-avalanches via data-driven classification of acoustic emission signals. Phys Rev E 2023; 108:045001. [PMID: 37978707 DOI: 10.1103/physreve.108.045001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 11/19/2023]
Abstract
Acoustic emission (AE) is a powerful experimental method for studying discrete and impulsive events termed avalanches that occur in a wide variety of materials and physical phenomena. A particular challenge is the detection of small-scale avalanches, whose associated acoustic signals are at the noise level of the experimental setup. The conventional detection approach is based on setting a threshold significantly larger than this level, ignoring "false" events with low AE amplitudes that originate from noise. At the same time, this approach overlooks small-scale events that might be true and impedes the investigation of avalanches occurring at the nanoscale, constituting the natural response of many nanoparticles and nanostructured materials. In this work, we develop a data-driven method that allows the detection of small-scale AE events, which is based on two propositions. The first includes a modification of the experimental conditions by setting a lower threshold compared to the conventional threshold, such that an abundance of small-scale events with low amplitudes are considered. Second, instead of analyzing several conventional scalar features (e.g., amplitude, duration, energy), we consider the entire waveform of each AE event and obtain an informative representation using dynamic mode decomposition. We apply the developed method to AE signals measured during the compression of platinum nanoparticles and demonstrate a significant enhancement of the detection range toward small-scale events that are below the conventional threshold.
Collapse
Affiliation(s)
- Emil Bronstein
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Jonathan Zimmerman
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Eugen Rabkin
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Eilon Faran
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Ronen Talmon
- Viterbi Faculty of Electrical and Computer Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Doron Shilo
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
4
|
Tóth LZ, Daróczi L, Elrasasi TY, Beke DL. Clustering Characterization of Acoustic Emission Signals Belonging to Twinning and Dislocation Slip during Plastic Deformation of Polycrystalline Sn. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6696. [PMID: 36234037 PMCID: PMC9572014 DOI: 10.3390/ma15196696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Results of acoustic emission (AE) measurements, carried out during plastic deformation of polycrystalline Sn samples, are analyzed by the adaptive sequential k-means method. The acoustic avalanches, originating from different sources, are separated on the basis of their spectral properties, that is, sorted into clusters, presented both on the so-called feature space (energy-median frequency plot) and on the power spectral density (PSD) curves. We found that one cluster in every measurement belongs to background vibrations, while the remaining ones are clearly attributed to twinning as well as dislocation slips at −30 °C and 25 °C, respectively. Interestingly, fingerprints of the well-known “ringing” of AE signals are present in different weights on the PSD curves. The energy and size distributions of the avalanches, corresponding to twinning and dislocation slips, show a bit different power-law exponents from those obtained earlier by fitting all AE signals without cluster separation. The maximum-likelihood estimation of the avalanche energy (ε) and size (τ) exponents provide ε=1.57±0.05 (at −30 °C) and ε=1.35±0.1 (at 25 °C), as well as τ=1.92±0.05 (at −30 °C) and τ= 1.55±0.1 (at 25 °C). The clustering analysis provides not only a manner to eliminate the background noise, but the characteristic avalanche shapes are also different for the two mechanisms, as it is visible on the PSD curves. Thus, we have illustrated that this clustering analysis is very useful in discriminating between different AE sources and can provide more realistic estimates, for example, for the characteristic exponents as compared to the classical hit-based approach where the exponents reflect an average value, containing hits from the low-frequency mechanical vibrations of the test machine, too.
Collapse
Affiliation(s)
- László Z. Tóth
- Department of Solid State Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lajos Daróczi
- Department of Solid State Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Tarek Y. Elrasasi
- Department of Physics, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Dezső L. Beke
- Department of Solid State Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| |
Collapse
|
5
|
Denouement of the Energy-Amplitude and Size-Amplitude Enigma for Acoustic-Emission Investigations of Materials. MATERIALS 2022; 15:ma15134556. [PMID: 35806681 PMCID: PMC9267350 DOI: 10.3390/ma15134556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
There are many systems producing crackling noise (avalanches) in materials. Temporal shapes of avalanches, U(t) (U is the detected voltage signal, t is the time), have self-similar behaviour and the normalized U(t) function (e.g., dividing both the values of U and t by S1/2, where S is the avalanche area), averaged for fixed S, should be the same, independently of the type of materials or avalanche mechanisms. However, there are experimental evidences that the temporal shapes of avalanches do not scale completely in a universal way. The self-similarity also leads to universal power-law-scaling relations, e.g., between the energy, E, and the peak amplitude, Am, or between S and Am. There are well-known enigmas, where the above exponents in acoustic emission measurements are rather close to 2 and 1, respectively, instead of E~Am3 and S~Am2, obtained from the mean field theory, MFT. We show, using a theoretically predicted averaged function for the fixed avalanche area, U(t)=atexp(−bt2) (where a and b are non-universal, material-dependent constants), that the scaling exponents can be different from the MFT values. Normalizing U by Am and t by tm (the time belonging to the Am: rise time), we obtain tm~Am1−φ (the MFT values can be obtained only if φ would be zero). Here, φ is expected to be material-independent and to be the same for the same mechanism. Using experimental results on martensitic transformations in two different shape-memory single-crystals, φ = 0.8 ± 0.1 was obtained (φ is the same for both alloys). Thus, dividing U by Am as well as t by Am1−φ (~tm) leads to the same common, normalized temporal shape for different, fixed values of S. This normalization can also be used in general for other experimental results (not only for acoustic emission), which provide information about jerky noises in materials.
Collapse
|
6
|
Change of Acoustic Emission Characteristics during Temperature Induced Transition from Twinning to Dislocation Slip under Compression in Polycrystalline Sn. MATERIALS 2021; 15:ma15010224. [PMID: 35009370 PMCID: PMC8745864 DOI: 10.3390/ma15010224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
Abstract
In this study, acoustic emission (AE) measurements on polycrystalline tin as a function of temperature at different driving rates under compression were carried out. It is shown that there is a definite difference between the acoustic emission characteristics belonging to twinning (low temperatures) as well as to dislocation slip (high temperatures). The stress averaged values of the exponents of the energy probability density functions decreased from ε = 1.45 ± 0.05 (-60 °C) to ε = 1.20 ± 0.15 (50 °C) at a driving rate of ε=0.15 s-1, and the total acoustic energy decreased by three orders of magnitude with increasing temperature. In addition, the exponent γ in the scaling relation SAE~DAEγ (SAE is the area and DAE is the duration) also shows similar temperature dependence (changing from γ = 1.78 ± 0.08 to γ = 1.35 ± 0.05), illustrating that the avalanche statistics belong to two different microscopic deformation mechanisms. The power law scaling relations were also analyzed, taking into account that the detected signal is always the convolution of the source signal and the transfer function of the system. It was obtained that approximate values of the power exponents can be obtained from the parts of the above functions, belonging to large values of parameters. At short duration times, the attenuation effect of the AE detection system dominates the time dependence, from which the characteristic attenuation time, τa, was determined as τa ≅ 70 μs.
Collapse
|
7
|
Tóth LZ, Daróczi L, Panchenko E, Chumlyakov Y, Beke DL. Acoustic Emission Characteristics and Change the Transformation Entropy after Stress-Induced Martensite Stabilization in Shape Memory Ni 53Mn 25Ga 22 Single Crystal. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2174. [PMID: 32397316 PMCID: PMC7254387 DOI: 10.3390/ma13092174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022]
Abstract
Measurements have been carried out to compare stress-induced martensite stabilization aged (SIM-aged) and as grown shape memory Ni53Mn25Ga22 single crystals with the means of simultaneous differential scanning calorimetry (DSC) and acoustic emission (AE). Contrary to expectations, the position of the hysteresis practically did not change, whilst the width of the hysteresis increased, and the forward and reverse transitions became sharper in the SIM-aged sample. The energy distributions of acoustic hits showed regular power law behaviour and the energy exponents were slightly different for heating and cooling; this asymmetry had different signs for the SIM-aged and as grown samples. During heating, in accordance with the sharper transitions observed in the DSC runs, two well-marked jumps could be seen on the plot of cumulative number of the acoustic emission events. Therefore, these were attributed to high sudden jumps in the phase transition during heating observed in the DSC. The effect of the SIM-aging on the transformation entropy was also investigated and it was found that it was about 36% less in the case of the SIM-aged sample.
Collapse
Affiliation(s)
- László Zoltán Tóth
- Department of Solid State Physics, University of Debrecen. P. O. Box 400, H-4002 Debrecen, Hungary; (L.Z.T.); (L.D.)
| | - Lajos Daróczi
- Department of Solid State Physics, University of Debrecen. P. O. Box 400, H-4002 Debrecen, Hungary; (L.Z.T.); (L.D.)
| | - Elena Panchenko
- Siberian Physical Technical Institute, Tomsk State University, Tomsk 634050, Russia; (E.P.); (Y.C.)
| | - Yuri Chumlyakov
- Siberian Physical Technical Institute, Tomsk State University, Tomsk 634050, Russia; (E.P.); (Y.C.)
| | - Dezső László Beke
- Department of Solid State Physics, University of Debrecen. P. O. Box 400, H-4002 Debrecen, Hungary; (L.Z.T.); (L.D.)
| |
Collapse
|
8
|
Effect of Stress-Induced Martensite Stabilization on Acoustic Emission Characteristics and the Entropy of Martensitic Transformation in Shape Memory Ni51Fe18Ga27Co4 Single Crystal. METALS 2020. [DOI: 10.3390/met10040534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Simultaneous differential scanning calorimetry, DSC, and acoustic emission, AE, measurements were carried out for single crystals of quenched and stress-induced martensite stabilized (SIM-aged) shape memory Ni51Fe18Ga27Co4 alloy. The transformation temperatures were shifted to higher values, the forward (from austenite to martensite) and reverse transitions became sharper and the width of the hysteresis increased in the SIM-aged sample. The energy distributions of acoustic hits showed similar behaviour to those of the quenched sample and the energy exponents, characterizing the power law behaviour, were also similar. For SIM-aged alloys at heating, in accordance with the sharper (burst-like) transition observed in the DSC run, few high-energy solitary hits were observed, and these hits did not fit to the energy distribution function fitted for smaller energies. Thus, these high-energy events were attributed to high sudden jumps in the phase transition during heating. The effect of long-range order (by applying a heat treatment at 573 K for 6 h to transform the B2 austenite to ordered L21 structure) and the SIM-aging on the transformation entropy was also investigated by DSC. It was found that the entropy was about 36% smaller after SIM-aging of the quenched sample and it was practically unchanged after austenite stabilization.
Collapse
|